Synthesis and Microphase Separation of Biodegradable Poly($\varepsilon$-caprolactone)-Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Multiblock Copolymer Films

  • You, Jae-Ho (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Choi, Sung-Wook (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Kwak, Young-Tae (Department of Thoracic and Cardiovascular Surgery, East-West Neo Medical Center, College of Medicine, Kyung Hee University)
  • Published : 2008.10.31

Abstract

Poly($\varepsilon$-caprolactone)-poly(ethylene glycol)-poly($\varepsilon$-caprolactone) (PCL-PEG-PCL) multiblock copolymers at various hydrophobic-hydrophilic ratios were successfully synthesized by the chain extension of triblock copolymers through isocyanate (hexamethylene diisocyanate). Biodegradable films were prepared from the resulting multiblock copolymers using the casting method. The mechanical properties of the films were improved by chain extension of the triblock copolymers, whereas the films prepared by the triblock copolymers were weak and brittle. Atomic force microscopy (AFM) of the multiblock copolymer film showed that the hydrophilic PEG had segregated on the film surface. This is consistent with the observed contact angle of the films.

Keywords

References

  1. A. C. Albertsson and U. Edlund, Adv. Drug Deliver. Rev., 55, 585 (2003) https://doi.org/10.1016/S0169-409X(03)00036-X
  2. J. C. Middleton and A. J. Tipton, Biomaterials, 21, 2335 (2000) https://doi.org/10.1016/S0142-9612(00)00101-0
  3. K. Woei, D. W. Hutmacher, J. T. Schantz, C. Seng, H. P. Too, T. Chye, T. T. Phan, and S. H. Teoh, Tissue Eng., 7, 441 (2001) https://doi.org/10.1089/10763270152436490
  4. A. M. Le Ray, S. Chiffoleau, P. Iooss, G. Grimandi, A. Gouyette, G. Daculsi, and C. Merle, Biomaterials, 24, 443 (2003) https://doi.org/10.1016/S0142-9612(02)00357-5
  5. C. G. Pitt, A. R. Jeffcoat, R. A. Zweidinger, and A. Schindler, J. Biomed. Mater. Res., 13, 497 (1979) https://doi.org/10.1002/jbm.820130313
  6. S. W. Hong, K. H. Kim, J. Huh, C. H. Ahn, and W. H. Jo, Macromol. Res., 13, 397 (2005) https://doi.org/10.1007/BF03218472
  7. J. S. Yoo, M. S. Kim, D. S. Lee, B. S. Kim, and J. H. Kim, Macromol. Res., 14, 117 (2006) https://doi.org/10.1007/BF03219078
  8. S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  9. W. Lin, J. Biomed. Mater. Res., 47, 420 (1999) https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<420::AID-JBM18>3.0.CO;2-7
  10. W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu, React. Funct. Polym., 32, 161 (1997) https://doi.org/10.1016/S1381-5148(96)00081-8
  11. H. Yavuz and C. Babac, Polym. Degrad. Stabil., 75, 431 (2002) https://doi.org/10.1016/S0141-3910(01)00242-7
  12. I. Barakat, P. H. Dubois, C. H. Grandfils, and R. Jerome, J. Polym. Sci. Part A: Polym. Chem., 39, 294 (2002) https://doi.org/10.1002/1099-0518(20010115)39:2<294::AID-POLA50>3.0.CO;2-A
  13. M. Bero, B. Czapla, P. Dobrzynski, H. Janeczek, and J. Kasperczyk, Macromol. Chem. Phys., 200, 911 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<911::AID-MACP911>3.0.CO;2-A
  14. H. X. Ge, Y. Hu, X. Q. Jiang, D. M. Cheng, Y. Y. Yuan, H. Bi, and C. Z. Yang, J. Pharm. Sci., 91, 1463 (2002) https://doi.org/10.1002/jps.10143
  15. F. He, S. M. Li, M. Vert, and R. X. Zhuo, Polymer, 44, 5145 (2003) https://doi.org/10.1016/S0032-3861(03)00562-7
  16. J. M. Harris, Topics in applied chemistry, J. M. Harris, Ed., New York, Plenum Press, 1992, pp 1-14
  17. R. Sbarbati del Guerra, C. Cristallini, N. Rizzi, R. Barsacchi, G. D. Guerra, M. Tricoli, and P. Cerrai, J. Mater. Sci.; Mater. Med., 5, 891 (1994) https://doi.org/10.1007/BF01172032
  18. B. Bogdanov, A. Vidts, E. Schacht, and H. Berghmans, Macromolecules, 32, 726 (1999) https://doi.org/10.1021/ma980226a
  19. S. M. Li, X. M. Chen, R. A. Gross, and S. P. McCarthey, J. Mater. Sci.; Mater. Med., 11, 227 (2000) https://doi.org/10.1023/A:1008920326988
  20. M. N. Kumar, N. Kumar, A. J. Domb, and M. Arora, Adv. Polym. Sci., 160,45 (2002) https://doi.org/10.1007/3-540-45362-8_2
  21. J. Kreuter, Colloidal drug delivery systems, New York, Marcel Dekker, 1994, pp 219-342
  22. H. Otsuka, Y. Nagasaki, and K. Kataoka, Adv. Drug Deliver. Rev., 55, 403 (2003) https://doi.org/10.1016/S0169-409X(02)00226-0
  23. H. R. Kricheldorf and S. Rost, Polymer, 46, 3248 (2005) https://doi.org/10.1016/j.polymer.2005.02.004
  24. D. Cohn and A. Hotovely-Salomon, Polymer, 46, 2068 (2005) https://doi.org/10.1016/j.polymer.2005.01.012
  25. X. Chen, S. P. McCarthy, and R. A. Gross, Macromolecules, 30, 4295 (1997) https://doi.org/10.1021/ma970385e
  26. D. K. Gilding and A. M. Reed, Polymer, 20,1454 (1979) https://doi.org/10.1016/0032-3861(79)90008-9
  27. Z. Cheng and S. H. Teoh, Biomaterials, 25, 1991 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.038
  28. M. A. Al-Nasassrah, F. Podczeck, and J. M. Newton, Eur. J. Pharm. Biopharm., 46, 31 (1998) https://doi.org/10.1016/S0939-6411(97)00151-3