Application of Excited-State Intramolecular Proton Transfer (ESIPT) Principle to Functional Polymeric Materials

  • Park, Sang-Hyuk (School of Materials Science and Engineering, Seoul National University) ;
  • Kim, Se-Hoon (School of Materials Science and Engineering, Seoul National University) ;
  • Seo, Jang-Won (School of Materials Science and Engineering, Seoul National University) ;
  • Park, Soo-Young (School of Materials Science and Engineering, Seoul National University)
  • 발행 : 2008.07.31

초록

Synthesis and properties of novel excited-state intramolecular proton transfer (ESIPT) materials, recently developed in our group, are described. Highly efficient ESIPT reaction, achieved in polyquinolines, polybenzoxazoles, and oxadiazole and imidazole derivatives possessing an intramolecular tautomerizable hydrogen bond, has been investigated theoretically and experimentally. It is demonstrated that unique properties arising from the ESIPT process (large Stokes' shift, no self-absorption, and easy population inversion, etc.) make it possible to produce advanced polymer devices for lasing, optical storage, and electroluminescence.

키워드

참고문헌

  1. J. Goodman and L. E. Brus, J. Am. Chem. Soc., 100, 7472 (1978) https://doi.org/10.1021/ja00492a005
  2. M. Kasha, Journal of the Chemical Society-Faraday Transactions Ii, 82, 2379 (1986) https://doi.org/10.1039/f29868202379
  3. A. S. Klymchenko and A. P. Demchenko, J. Am. Chem. Soc., 124, 12372 (2002) https://doi.org/10.1021/ja027669l
  4. K. Sakai, M. Ichikawa, and Y. Taniguchi, Chem. Phys. Lett., 420, 405 (2006) https://doi.org/10.1016/j.cplett.2005.12.074
  5. R. M. Tarkka, X. J. Zhang, and S. A. Jenekhe, J. Am. Chem. Soc., 118, 9438 (1996) https://doi.org/10.1021/ja9613365
  6. M. Luiz, A. Biasutti, A. T. Soltermann, and N. A. Garcia, Polym. Degrad. Stab., 63, 447 (1999) https://doi.org/10.1016/S0141-3910(98)00126-8
  7. J. Seo, S. Kim, S. Park, and S. Y. Park, Bull. Korean Chem. Soc., 26, 1706 (2005) https://doi.org/10.5012/bkcs.2005.26.11.1706
  8. R. Traiphol and N. Charoenthai, Macromol. Res., 16, 224 (2008) https://doi.org/10.1007/BF03218857
  9. Y. H. Kim, H. O. Lee, and K.S. Lee, Macromol. Res., 11, 471 (2003) https://doi.org/10.1007/BF03218978
  10. M. Fischer and P. Wan, J. Am. Chem. Soc., 121, 4555 (1999) https://doi.org/10.1021/ja983557b
  11. J. Seo, S. Kim, and S. Y. Park, J. Am. Chem. Soc., 126, 11154 (2004) https://doi.org/10.1021/ja047815i
  12. D. W. Chang, S. Kim, S. Y. Park, H. Yu, and D.-J. Jang, Macromolecules, 33, 7223 (2000) https://doi.org/10.1021/ma000126g
  13. C. H. Kim, D. W. Chang, S. Kim, S. Y. Park, and T. Joo, Chem. Phys. Lett., 450, 302 (2008) https://doi.org/10.1016/j.cplett.2007.11.047
  14. J. Seo, S. Kim, S. H. Gihm, C. R. Park, and S. Y. Park, J. Mater. Chem., 17, 5052 (2007) https://doi.org/10.1039/b711883j
  15. S. Park, O.-H. Kwon, Y.-S. Lee, D.-J. Jang, and S. Y. Park, J. Phys. Chem., 111, 9649 (2007) https://doi.org/10.1021/jp072212p
  16. M. K. Nayak, J. Seo, S. Park, and S. Y. Park, J. Photochem. Photobiol. A: Chem., 191, 228 (2007) https://doi.org/10.1016/j.jphotochem.2007.04.028
  17. J. Seo, S. Kim, Y.-S. Lee, O.-H. Kwon, K. H. Park, S. Y. Choi, D.-J. Jang, and S. Y. Park, J. Photochem. Photobiol. A: Chem., 191, 51 (2007) https://doi.org/10.1016/j.jphotochem.2007.04.003
  18. H. H. Lim, S. Boomadevi, O.-Y. Jeon, K. Kyhm, M. Cha, S. Park, and S. Y. Park, J. Kor. Phys. Soc., 50, 484 (2007) https://doi.org/10.3938/jkps.50.484
  19. H. H. Lim, S. Boomadevi, O.-Y. Jeon, K. Kyhm, M. Cha, S. Park, and S. Y. Park, Mater. Lett., 61, 4213 (2007) https://doi.org/10.1016/j.matlet.2007.01.057
  20. J. H. Park, O.-Y. Jeon, H. H. Lim, M. Cha, S. Park, and S. Y. Park, J. Kor. Phys. Soc., 49, S592 (2006)
  21. S. Kim, D. W. Chang, S. Y. Park, K. Kim, and J.-I. Jin, Bull. Kor. Chem. Soc., 22, 1407 (2001)
  22. C. Park, M. Rhue, and M. Im, Macromol. Res., 15, 688 (2007) https://doi.org/10.1007/BF03218951
  23. S. J. Min, B. J. Park, and J. M. Kim. Macromol. Res., 12, 615 (2004) https://doi.org/10.1007/BF03218453
  24. S. Park, O.-H. Kwon, S. Kim, S. Park, M.-G. Choi, M.-Cha, D.-J. Jang, and S. Y. Park, J. Am. Chem. Soc., 127, 10070 (2005) https://doi.org/10.1021/ja0508727
  25. S. Kim, D. W. Chang, S. Y. Park, S. C. Jeoung, and D. Kim, Macromolecules, 15, 6064 (2002)
  26. S. Kim, D. W. Chang, S. Y. Park, H. Kawai, and T. Nagamura, Macromolecules, 35, 2748 (2002) https://doi.org/10.1021/ma011385o
  27. S. Kim, S. Y. Park, I. Yoshida, H. Kawai, and T. Nagamura, J. Phys. Chem. B., 106, 9291 (2002) https://doi.org/10.1021/jp021048x
  28. P.-T.Chou, Y.-C. Chen, W.-S. Yu, Y.-H. Chou, C.-Y. Wei, and Y.-M. Cheng, J. Phys. Chem. A, 105, 1731 (2001) https://doi.org/10.1021/jp002942w
  29. S. Kim and S. Y. Park, Adv. Mater., 15, 1341 (2003) https://doi.org/10.1002/adma.200305050
  30. S. Park, S. Kim, J. Seo, and S. Y. Park, Macromolecules, 38, 4557 (2005) https://doi.org/10.1021/ma050009r
  31. G. W. Kim, W. G. Jun, S. K. Lee, M. J. Cho, J. I. Jin, and D. H. Choi, Macromol. Res., 13, 477 (2005) https://doi.org/10.1007/BF03218484
  32. C. S. Hong, M. Jikei, R. Kikuchi, and M. Kakimoto, Macromolecules, 36, 3174 (2003) https://doi.org/10.1021/ma021692+
  33. C.-W. Lee, Y-.H. Seo, and S.-H. Lee, Macromolecules, 37, 4070 (2004) https://doi.org/10.1021/ma0357624
  34. J, M. Klopp, D. Pasini, J. D. Byers, C. G..Willson, and J. M. FrZchet, Chem. Mater., 13, 4147 (2001) https://doi.org/10.1021/cm010431w
  35. S. Park, J. Seo, S. H. Kim, and S. Y. Park, Adv. Funct. Mater., 18, 726 (2008) https://doi.org/10.1002/adfm.200700827
  36. S. Kim, J. Seo, H. K. Jung, J.-J. Kim, and S. Y. Park, Adv. Mater., 17, 2077 (2005) https://doi.org/10.1002/adma.200401739
  37. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York, 1971
  38. J. C. deMello, H. F Wittmann, and R. H. Friend, Adv. Mater., 9, 230 (1997) https://doi.org/10.1002/adma.19970090308
  39. J. Yoo, J. H. Lee, I. Cho, K. D. Ahn, and J. M. Kim, Macromol. Res., 11, 69 (2003) https://doi.org/10.1007/BF03218280