Synthesis and Surface Relief Gratings of Three-Armed Star-Shaped Molecules Bearing 4-(N,N-Diphenyl)Amino-4'-Nitroazobenzene Chromophores

  • Lee, Jung-Eun (Department of Chemistry, Advanced Materials Chemistry Research center, Korea University) ;
  • Jung, Kyung-Moon (Department of Chemistry, Advanced Materials Chemistry Research center, Korea University) ;
  • Cho, Min-Ju (Department of Chemistry, Advanced Materials Chemistry Research center, Korea University) ;
  • Kim, Kyung-Hwan (Department of Chemistry, Advanced Materials Chemistry Research center, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Advanced Materials Chemistry Research center, Korea University)
  • Published : 2008.07.31

Abstract

Three-armed, star-shaped molecules containing 4-(N,N-diphenyl)amino-4'-nitroazobenzene chromophores were synthesized to study the diffraction behavior after inscribing surface relief gratings. The two molecules differed in terms of their mode of chromophore attachment to the core. In compound 5, they were bound to the core laterally through alkylene spacers, whereas the chromophores were tethered perpendicularly to the core in compound 4. Although 60 wt% of the polar azobenzene chromophores was comprised of large molecules, no aggregation behavior was observed in the absorption spectra of the thin films. The surface relief gratings were elaborated on the surface of the molecular films by the two-beam interference method. The dynamics of grating formation were studied in terms of the diffraction efficiency using two different film samples made up of two star-shaped molecules. The maximum diffraction efficiency of D-$(ENAZ)_3$, compound 4, was measured to be about 30%, which was significantly high. The mode of chromophore attachment affected the dynamic properties of the diffraction gratings.

References

  1. T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, Macromolecules, 23, 42 (1990) https://doi.org/10.1021/ma00203a009
  2. C. Chen, L. Dalton, L.Yu, Y. Shi, and W. Steier, Macromolecules, 25, 4023 (1992)
  3. H. Ringsdorf and H-W. Scmidt, Makromol. Chem., 185, 1327 (1984) https://doi.org/10.1002/macp.1984.021850706
  4. V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, Jpn. J. Appl. Phys., 36, 429 (1997) https://doi.org/10.1143/JJAP.36.429
  5. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, Appl. Phys. Lett., 60, 6 (1992) https://doi.org/10.1063/1.107377
  6. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, J. Opt. Soc. Am. B, 15, 1257 (1998) https://doi.org/10.1364/JOSAB.15.001257
  7. T. Todorov, L. Nikolova, and N. Tomova, Applied Optics, 23, 4588 (1984) https://doi.org/10.1364/AO.23.004588
  8. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam , Applied Optics, 35, 3835 (1996) https://doi.org/10.1364/AO.35.003835
  9. I. Naydenova, Tz. Petrova, N. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, Pure Appl. Opt., 7, 723 (1998) https://doi.org/10.1088/0963-9659/7/4/009
  10. T. S. Lee, D. Y. Kim, X. L. Jianga, L. Lia, J. Kumap, and S. Tripathy, Macromol. Chem. Phys., 198, 2279 (1997) https://doi.org/10.1002/macp.1997.021980720
  11. O. Watanabe, M. Narita, T. Ikawa, and M. Tsuchimori, Polymer, 47, 4742 (2006) https://doi.org/10.1016/j.polymer.2006.04.060
  12. J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, Chem. Mater., 19, 3877 (2007) https://doi.org/10.1021/cm0707197
  13. Y. Wu, A. Natansohn, and P. Rochon, Macromolecules, 34, 7822 (2001) https://doi.org/10.1021/ma0102722
  14. M. Han, S. Morino, and K. Ichimura, Macromolecules, 33, 6360 (2000) https://doi.org/10.1021/ma000347m
  15. L. Andruzzi, A. Altomare, F. Ciardelli, R. Solaro, S. Hvilsted, and P. S. Ramanujam, Macromolecules, 32, 448 (1999) https://doi.org/10.1021/ma980160j
  16. T. K. Lim, S. H. Hong, M. Y. Jeong, G. J. Lee, J. -I. Jin, and H. Y. Oh, Macromolecules, 32, 7051 (1999) https://doi.org/10.1021/ma990523v
  17. S. Bai and Y. Zhao, Macromolecules, 35, 9657 (2002) https://doi.org/10.1021/ma020822b
  18. Y. Wu, A. Natansohn, and P. Rochon, Macromolecules, 34, 7822 (2001) https://doi.org/10.1021/ma0102722
  19. M. Devereux and P. L. A. Popelier, J. Phys. Chem. A, 111, 1536 (2007) https://doi.org/10.1021/jp067922u
  20. S. W. Cha, D. H. Choi, D. K. Oh, D. Y. Han, C. E. Lee, and J.-I. Jin, Adv. Func. Mater., 12, 670 (2002) https://doi.org/10.1002/1616-3028(20021016)12:10<670::AID-ADFM670>3.0.CO;2-Z
  21. B. J. Kim, S. Y. Park, and D. H. Choi, Bull. Korean Chem. Soc., 22, 2712 (2001)