Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Byung-Ill (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Cho, Byoung-Ki (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University)
  • Published : 2008.02.29

Abstract

A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.

Keywords

References

  1. A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev., 99, 1665 (1999)
  2. S. M. Grayson and J. M. J. FrZchet, Chem. Rev., 101, 3819 (2001) https://doi.org/10.1021/cr990410+
  3. H. D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, G. Johansson, G. Ungar, and V. S. K. Balagurusamy, Science, 278, 449 (1997)
  4. L. Gehringer, C. Bourgogne, D. Guillon, and B. Donnio, J. Am. Chem. Soc., 126, 3856 (2004) https://doi.org/10.1021/ja037954k
  5. M. Fisher and F. Vsgtle, Angew. Chem. Int. Ed., 38, 884 (1999)
  6. A. Hirao, Y. Tsunoda, A. Matsuo, K. Sugiyama, and T. Watanabe, Macromol. Res., 14, 272 (2006) https://doi.org/10.1007/BF03219083
  7. C. Park, I. H. Lee, S. Lee, Y. Song, M. Rhue, and C. Kim, Proc. Natl. Acad. Sci. USA, 103, 1199 (2006)
  8. Y. Kamikawa and T. Kato, Org. Lett., 8, 2463 (2006)
  9. L. Gehringer, D. Guillon, and B. Donnio, Macromolecules, 36, 5593 (2003)
  10. K. T. Kim, I. H. Lee, C. Park, Y. Song, and C. Kim, Macromol. Res., 12, 528 (2004)
  11. Y. Song, C. Park, and C. Kim, Macromol. Res., 14, 235 (2006) https://doi.org/10.1007/BF03218515
  12. D. R. Dukeson, G. Ungar, V. S. K. Balagurusamy, V. Percec, G. Johansson, and M. Glodde, J. Am. Chem. Soc., 125, 15974 (2003)
  13. M. Surez, J.-M. Lehn, S. C. Zimmerman, A. Skoulios, and B. Heinrich, J. Am. Chem. Soc., 120, 9526 (1998)
  14. V. Percec, W.-D. Cho, G. Ungar, and D. J. P. Yeardley, J. Am. Chem. Soc., 123, 1302 (2001)
  15. G. Ungar, Y. Liu, X. Zeng, V. Percec, and W.-D. Cho, Science, 299, 1208 (2003)
  16. X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, Nature, 428, 157 (2004)
  17. D. J. P. Yeardley, G. Ungar, V. Percec, M. N. Holerca, and G. Johansson, J. Am. Chem. Soc., 122, 1684 (2000)
  18. V. Percec, M. Peterca, M. J. Sienkowska, M. A. Ilies, E. Aqad, J. Smidrkal, and P. A. Heiney, J. Am. Chem. Soc., 128, 3324 (2006) https://doi.org/10.1021/ja054700l
  19. V. Percec, A. E. Dulcey, M. Peterca, P. Adelman, R. Samant, V. S. K. Balagurusamy, and P. A. Heiney, J. Am. Chem. Soc., 129, 5992 (2007)
  20. J. C. M. van Hest, M. W. P. L. Baars, C. Elissen-Romn, M. H. P. van Genderen, and E. W. Meijer, Macromolecules, 28, 6689 (1995)
  21. C. Romn, H. R. Fischer, and E. W. Meijer, Macromolecules, 32, 5525 (1999)
  22. A. P. H. J. Schenning, C. Elissen-Romn, J.-W. Weener, M. W. P. L. Baars, S. J. van der Gaast, and E. W. Meijer, J. Am. Chem. Soc., 120, 8199 (1998)
  23. J. Iyer and P. T. Hammond, Langmuir, 15, 1299 (1999)
  24. J. Iyer, K. Fleming, and P. T. Hammond, Macromolecules, 31, 8757 (1998)
  25. J. H. Cameron, A. Facher, G. Lattermann, and S. Diele, Adv. Mater., 9, 398 (1997) https://doi.org/10.1002/adma.19970091219
  26. M. Jayaraman and J. M. J. FrZchet, J. Am. Chem. Soc., 120, 12996 (1998) https://doi.org/10.5012/bkcs.2006.27.1.029
  27. B.-K. Cho and Y.-W. Chung, Bull. Korean Chem. Soc., 27, 29 (2006)
  28. Y.-S. Yoo, J.-H. Choi, J.-H. Song, N.-K. Oh, W.-Z. Zin, S. Park, T. Chang, and M. Lee, J. Am. Chem. Soc., 126, 6294 (2004)
  29. B.-K. Cho, A. Jain, J. Nieberle, S. Mahajan, U. Wiesner, S. M. Gruner, S. TYrk, and H. J. RSder, Macromolecules, 37, 4227 (2004)
  30. Y. L. Loo, R. A. Register, and D. H. Adamson, J. Polym. Sci.; Part B: Polym. Phys., 38, 2564 (2000)
  31. D. Pavia, Introduction to Spectroscopy, Thomson Learning, 2001
  32. Analysis of the SAXS pattern was performed on the basis of the following equation: $q^2(2{\pi})^2=h^2/(asin{\gamma})^2hkcos{\gamma}/absin^2{\gamma}+K^2/(bsin{\gamma})^2$, where h and k are Miller indices of the scattering planes, a and b are unit cell basis vectors, and $\gamma$ is the angle between a and b ($0{\circ}{\prec}{\gamma}{\prec}180{\circ})$
  33. V. Balsamo, F. von Gyldenfeldt, and R. Stadler, Macromolecules, 32, 1226 (1999)