The Vertical Changes of Zooplankton Dynamics and Community Filtration Rate in the Artificial Lake (Okjeong Lake)

인공호수(옥정호)내 동물플랑크톤 동태 및 군집 여과율의 수직적 변화

  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Lee, Hak-Young (Department of Biological Sciences, Chonnam National University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
  • Published : 2008.11.30

Abstract

The vertical changes (upper layer: 0$\sim$0.5 m, middle layer: 4$\sim$5 m and lower layer: 8$\sim$10 m) of the limnological variables, zooplankton dynamics and community filtration rate on the phytoplankton were evaluated monthly intervals from November 2004 to June 2007 at the artificiallake (Okjeong Lake). During the study, the annual mean of water temperatures were 15.2$\pm$7.8$^{\circ}C$ (upper layer), 14.5$\pm$7.4$^{\circ}C$ (middle layer) and 13.0$\pm$6.2$^{\circ}C$ (lower layer), respectively (n=30). The vertical variations of most limnological parameters (DO, pH, conductivity and turbidity) were fairly similar, except for chl.-${\alpha}$ concentration. Annual mean of chl.-${\alpha}$ concentration was highest at the upper layer (21.4 ${\mu}g$ L$^{-1}$), while annual means of concentrations were low at the middle layer and lower layer (4.3 ${\mu}g$ L$^{-1}$ and 3.5 ${\mu}g$ L$^{-1}$, respectively). Annual mean of Secchi depth was 261 cm (n=30). A total 45 species of zooplankton were identified (28 rotifers, 12 cladocerans and 5 copepods) during the study. The mean abundance of rotifers was highest (124$\pm$232 ind. L$^{-1}$, n =90) and that of cladocerans and copepods were relatively low (22$\pm$56 ind. L$^{-1}$ and 13$\pm$30 ind. L$^{-1}$) in the whole layer. Total zooplankton abundance increased from late spring to summer, and then declined and remained low throughout the winter. The annual mean of total zooplankton filtration rate for phytoplankton at the lower layer was much higher than that of both layers (upper layer: 44.4$\pm$107.8, middle layer: 95.1$\pm$436.4 and lower layer: 158.2$\pm$436.4 mL L$^{-1}$ day$^{-1}$). Among the major zooplankton community, relative community filtration rate (RCFR, %) of copepods for phytoplankton (50.2$\sim$54.8%) was much higher than that of cladocerans (27.7$\sim$36.3%) and rotifers (8$\sim$17.6%). The seasonal variation of RCFRs of major zooplankton community was observed. The RCFRs of rotifers were high in winter (44.6%, n=9), while the RCFRs of cladocerans were high in summer (58.0%, n=7). In spring and fall, the RCFRs of copepods were high in the whole layer (spring: 67.4%, n=9; fall: 74.4%, n=5).

인공호수(옥정호)에서 2004년 11월부터 2007년 6월까지 월 1회 간격으로 수층별(표층: 0$\sim$5 m, 중층: 4$\sim$5 m, 하층: 8$\sim$10 m)육수학적 요인과 동물플랑크톤군집 동태 및 식물플랑크톤에 대한 섭식 기여율을 파악하였다. 조사기간 동안 수층별 평균 수온은 각각 상층 15.2$\pm$7.8$^{\circ}C$, 중층 14.5$\pm$7.4$^{\circ}C$ 그리고 하층은 13.0$\pm$6.2$^{\circ}C$ (n=30)를 나타내었다 Chl. ${\alpha}$ 농도를 제외한 기초 이화학변수(용존산소량, pH, 전기전도도 및 탁도)의 경우 각 수층별로 유사하였다. Chl. ${\alpha}$ 농도는 상층에서 평균 21.4${\mu}g$ L$^{-1}$로 가장 높았던 반면, 중층과 하층에서는 각각 4.3 ${\mu}g$ L$^{-1}$와 3.5 ${\mu}g$ L$^{-1}$로 낮았다. 평균 Secchi수심은 261 cm(n=30)로 나타났다. 조사기간 동안 출현한 동물플랑크톤 종수는 총 45종으로, 윤충류 28종, 지각류 12종 그리고 요각류 5종이 동정되었다. 윤충류의 평균 밀도가 가장 높았으며 (평균 124$\pm$232 개체 L$^{-1}$, n=90), 지각류와 요각류의 평균 밀도는 상대적으로 낮았다(각각 22$\pm$56 개체 L$^{-1}$, 13$\pm$30 개체 L$^{-1}$). 전체 동물플랑크톤 풍부도는 늦음부터 여름철에 걸쳐 전 수층에서 증가한 후 감소하여 겨울 동안 낮게 유지되었다. 연평균 동물플랑크톤의 식물플랑크톤에 대한 여과 섭식률은 하층이 상층과 중층보다 높았다 (상층: 44.4$\pm$107.8, 중층: 95.1$\pm$198.6 그리고 하층: 158.2$\pm$436.4 mL L$^{-1}$ day$^{-1}$). 주요 동물플랑크톤 군집 중 요각류의 상대 군집 여과율(RCFR, %)이 50.2$\sim$54.8%로 윤충류(8.0$\sim$17.6%)와 지각류(27.7$\sim$36.3%)보다 더 높았다. 계절에 따른 RCFR의 변화가 관찰되었으며 윤충류의 RCFR은 겨울에(44.6%, n=9) 높았고, 지각류는 여름에 (58.0%, n=7)에 가장 높았다. 봄과 가을에는 요각류의 RCFR이 전 수층에서 가장 높았다(봄: 67.4%, n=9, 가을: 74.4%, n=5).

Keywords

References

  1. Agasild H, P Zingel, I Tonno, J Haberman and T Noges. 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Vortsjärv (Estonia). Hydrobiologia. 584:167-177 https://doi.org/10.1007/s10750-007-0575-z
  2. Ambler JW, FD Ferrari and JA Fornshell. 1991. Population structure and swarm formation of the cyclopoid copepod Dioithona oculata near mangrove cays. J. Plank. Res. 13: 1257-1272 https://doi.org/10.1093/plankt/13.6.1257
  3. Bogdan KG and JJ Gilbert. 1982. Seasonal patterns of feeding by natural population of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr. 27:918-934 https://doi.org/10.4319/lo.1982.27.5.0918
  4. Confer JL and PI Blades. 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr. 20:571-579 https://doi.org/10.4319/lo.1975.20.4.0571
  5. Dawidowicz P. 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia. 200/201:43-47
  6. DeMott WR. 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518-527 https://doi.org/10.4319/lo.1982.27.3.0518
  7. Einsle U. 1993. Crustacea, Copepoda, Calanoid und Cyclopoida. Susswasswefauna von Mitteleuropa, Vol. 8, part 4-1
  8. George MG and CH Fernando. 1970. Diurnal migration in three species of rotifers in Sunfish Lake, Ontario. Limnol. Oceanogr. 15: 218-223 https://doi.org/10.4319/lo.1970.15.2.0218
  9. Gliwicz ZM. 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. 17:663-708
  10. Hall DJ, ST Threlkeld, CW Burns and PH Crowley. 1976. The size efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst. 7:177-208 https://doi.org/10.1146/annurev.es.07.110176.001141
  11. Kim HW, KH Chang, KS Jeong and GJ Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in controlling the phytoplankton biomass. Korean J. Limnol. 36:420-426
  12. Kim HW, SJ Hwang and GJ Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22:1559-1577 https://doi.org/10.1093/plankt/22.8.1559
  13. Kim SW and YS Kang. 2003. Brackish lakes in shinpo district, North Korea. I. zooplankton. Korean J. Limnol. 36: 215-220
  14. Koste W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt. 2nd edn. Stuttgart. Textband, pp. 673 Tafelband, pp. 234
  15. Kvam OV and OT Kleiven. 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia. 307:177-184 https://doi.org/10.1007/BF00032010
  16. Lagergren R, K Leberfinger and JAE Stenson. 2008. Seasonal and ontogenic variation in diel vertical migration of Chaoborus and its effect on depth-selection behavior of other zooplankton. Limnol. Oceanogr. 53:1083-1092 https://doi.org/10.4319/lo.2008.53.3.1083
  17. Lair N. 1991. Grazing and assimilation rates of natural populations of planktonic cladocerans in a eutrophic lake. Hydrobiologia. 215:51-61 https://doi.org/10.1007/BF00005900
  18. Lair N. 1992. Daytime grazing and assimilation rates of planktonic copepods Acanthodiaptomus denticornis and Cyclops vicinus vicinus. Comparison of spatial and resourse utilization by rotifers and cladoceran communities in a eutrophic lake. Hydrobiologia. 231:107-117 https://doi.org/10.1007/BF00006503
  19. Lair N and H Oulad Ali. 1990. Grazing and assimilation rates of natural population of planktonic rotifers Keratella cochlearis, K. quadrata and Kellicottia longispina in an eutrophic lake (Aydat, France). Hydrobiologia. 194:119-131 https://doi.org/10.1007/BF00028413
  20. Lampert W and U Sommer. 1993. Limnookologie. Thieme Verlag. Stuttgart
  21. Magnien RE and JJ Gilbert. 1983. Diel cycles of reproduction and vertical migration in the rotifer Keratella crassa and their influence on the estimation of population dynamics. Limnol. Oceanogr. 28:957-969 https://doi.org/10.4319/lo.1983.28.5.0957
  22. Mayer J, MT Dokulil, M Salbrechter, M Berger, T Posch, G Pfister, AKT Kirschner, B Velimirov, A Steitz and T Ulbricht. 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia. 342/343:165-174 https://doi.org/10.1023/A:1017098131238
  23. Neil WE. 1992. Population variation in the ontogeny of predator- induced vertical migration of copepods. Nature 345: 54-57 https://doi.org/10.1038/345054a0
  24. Post DM. 2002. The long and short of food-chain length. Trends Ecol. Evol. 17:269-277 https://doi.org/10.1016/S0169-5347(02)02455-2
  25. Reichwaldt ES and H Stibor. 2005. The impact of diel vertical migration of Daphnia on phytoplankton dynamics. Oecologia. 146:50-56 https://doi.org/10.1007/s00442-005-0176-3
  26. Sahuquillo M, MGG Melao and MR Miracle. 2007. Low filtering rate of Daphnia magna in a hypertrophic lake: Laboratory and in situ experiments using synthetic microspheres. Hydrobiologia. 594:141-152 https://doi.org/10.1007/s10750-007-9079-0
  27. Smirnov NN and BV Timms. 1983. A revision of the Australian Cladocera (Crustacean). Res. Aust. Mus. Suppl. 1:1-132 https://doi.org/10.3853/j.0812-7387.1.1983.103
  28. Sommer U, ZM Gliwicz, W Lampert and A Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106:433-471
  29. Starkweather PL. 1980. Aspect of feeding behaviour and trophic ecology of suspension-feeding rotifers. Hydrobiologia. 73:63-72 https://doi.org/10.1007/BF00019427
  30. Uhm SH and SJ Hwang. 2006. Zooplankton grazing on bacteria and factors affecting bacterial C-flux in Lake Paldang ecosystem. Korean J. Limnol. 39:424-434
  31. Wetzel RG and GE Likens. 2000. Limnological Analyses. 3rd edn. Springer-Verlag. New York. p. 429
  32. Yoo HB. 1990. Ecological studies on the freshwater zooplanktonic rotifers in Lake Damyang. Korean J. Limnol. 23:1-13
  33. Zingel P. 1999. Pelagic ciliated protozoa in shallow eutrophic lake: community structure and seasonal dynamics. Arch. Hydrobiol. 146:495-511. https://doi.org/10.1127/archiv-hydrobiol/146/1999/495