Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters

영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계

  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Jae-Kyeng (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Lee, Sang-Jae (School of Bioscience and Biotechnology, Chungnam National University)
  • Published : 2008.08.31

Abstract

The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

본 연구는 연구의 목적은 총질소(TN), 총인(TP), 엽록소(Chl), 투명도(SD)의 변수를 이용하여 호수의 영양상태(Trophic state)를 평가하였고, 전기전도도에 따르면 부유물질(SS)의 역동성을 비교 평가하여 총질소-엽록소(TN-Chl), 총인-엽록소(TP-Chl), 엽록소-투명도(Chl-SD)의 경험적 모델을 분석하였다. 호소의 영양상태 분석에 따르면, 36개 인공호 중 절반이상이 부영양-과영양화 상태 (Eutrophy-Hypertrophy)로 나타났다. 총인의 월 변이(% Variation)가 최고 500%까지 상회하였으며 특히 8월에는 연중 최고치를 보였다. 한편 총질소의 월 변이는 90% 이하로 나타났으며, 모든 호수에서 평균 총질소 농도는 1.2 mg L$^{-1}$ 이상을 상회하여, 배경 농도가 높은 것으로 나타났다(부영양-과명양화상태). 경험적 모델 분석에 따르면 투명도의 변이는 총인(R$^2$=0.15, p<0.001) 및 총질소 (R$^2$=0.20, p<0.001)보다 주로 엽록소 (R$^2$=0.31, p<0.001)에 의해 설명되는 것으로 나타났다 총인, 총 질소의 비 (TN : TP ratio)의 분석에 따르면, 대부부의 인공호는 조류 생장에 있어 잠재적인 인(P)의 영향을 시사하였다. 따라서 식물성 플랑크톤 성장은 질소보다 인에 의하여 조절 되는 것으로 나타났다. 수질 변수의 연 평균값에 로그-전환(Log$_{10}$ transformation)한 후 실시한 선형 회귀분석에 따르면 엽록소는 총인 및 총질소에 의해 각각 30%, 15% 설명되어, 연관성이 극히 낮은 것으로 나타났다. 그러나 개별 호소에 대한 선형 회귀분석 일부 총인-엽록소가 강한 정 상관관계 (R$^2$=0.62, p=0.002, n=12)를 총질소-엽록소에서는 유의성이 없는 것으로 나타났다(p=0.892, n=12). 상기 연구를 종합해보면 경험적 모델 분석 시 자료의 평균효과(Averaging effect)는 모델의 변이성을 설명하는 데 중요한 것으로 나타났다.

Keywords

References

  1. 김범철, 안태석, 조규송. 1998. 한강수계 인공호의 부영양화에 관한 비교 연구. 한국육수학회지. 21:151-163
  2. 김범철, 김윤희, 2004. 아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용, 한국육수학회지. 37:205-212
  3. 김재윤. 2003. 총인부하량을 이용한 인공호의 부영양화 평가. 한국환경과학회지. 12:689-695
  4. 김종민, 허성남, 노혜란, 양희정, 한명수. 2003. 호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계. 한국육수학회지. 36:124-138
  5. 김호섭, 황순지. 2004. 육수학적 특성에 따른 국내 저수지의 부영양화 유형분석. 엽록소 $\alpha$와 수심을 중심으로. 한국육수학회지. 37:213-226
  6. 김호섭, 황순진, 공동수. 2007. 부영양 저수지에서 남조류의 발달과 천이 및 영향 요인. 한국육수학회지. 40:121-129
  7. 박선구, 조인기, 권오병, 문정수, 엄한용, 황순진. 2008. 인공식물섬에 의한 조류(Algae)및 영양염류의 제거. 한국육수학회지. 41:93-98
  8. 박재충, 박정원, 신재기, 이희무. 2005a. 인공호에서 몬순과 태풍 강우에 의한 고탁수층의 이동과 소멸특성. 한국육수학회지. 38:105-117
  9. 박혜경, 이현주, 김은경, 정동일. 2005b. 팔당호 조류발생 특성 및 수질환경인자의 통계적 분석. 한국물환경학회지. 21:584-594
  10. 서동일. 1998. 대청호의 성층현상에 의한 부영양화 특성과 수질관리 방안에 관한 연구. 대한환경공학회지. 20:1219-1234
  11. 손병주, 한지원. 1995. 동아시아 하계 몬순의 강약과 관련된 기후학적 특성. 한국기상학회지. 31:477-488
  12. 신재기, 조경제. 2000. 생물검정에 의한 남조류 Microcytosis 가 수질에 미치는 영양. 한국환경과학회지. 9:267-273
  13. 안광국, 신인철. 2005. 산간 계류성 하천으 계절적 수질변동에 대한 몬순강우의 영향. 한국육수학회지. 38:389-394
  14. 윤태광 윤태일, 김창균, 박세진. 2000. 부영양화 인공호소의 수질관리를 위한 초고속 응집침전(URC)공정으 적용. 대한환경공학회지. 22:2025-2036
  15. 이상재, 이재연, 이재훈, 배대열, 이의행, 한정호, 황순진, 안광국. 2008. 실험적 생물조절 기법을 이용한 엽록소 및 남조류 제거 효과. 한국육수학회지. 41:86-92
  16. 이진환, 오희목, 맹주선. 2000. 대청호의 수질과 식품플랑크톤 현존량. 환경생물. 18:355-365
  17. 이혜원, 안광국, 박석순. 2002. 소양호 표층수 수질의 연별추이 및 상.하류 이질성 분석. 한국육수학회지. 53:36-44
  18. 최은미, 김호섭, 김범철, 김동우, 황하선. 2006. 국내저수지 유역특성에 따른 부영양화 분석. 한국물환경학회, 대한상수도협회 공동춘계학술발표 논문집. 1059-1068
  19. 허우명, 김범철, 황길순 최광순, 박원규. 1995. 낙동강 수계의 계절별 인, 질소, Chl-$\alpha$와 영양염류 농도분포. 한국육수학회지. 28:175-181
  20. 허진, 신재기, 박성원. 2006. 하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석. 대한환경공학회지. 28:940-948
  21. An KG. 2000a. An Influence of piont-source and now events on inorganic nitrogen fractions in a large artificial reservoir. Korean J. Limnol. 33:350-357
  22. An KG. 2000b. Monsoon inflow as a major source of in-lake phosphorous. Korean J. Limnol. 33:222-229
  23. An KG. 2000c. The impact of monsoon on seasonal variability of basin morphology and hydrology. Korean J. Limnol. 33:342-349
  24. An KG. 2001. Hydrological significance on interannual variability of cations. anions. and conductivity in a large reservoir ecosystem. Korean J. Limnol. 34: 1-8
  25. An KG and DS Kim. 2003. Response of lake water quality to nutrient inputs from various streams and in-lake fishfarms. Water, Air, and Soil Pollution, 149:27-49 https://doi.org/10.1023/A:1025602213674
  26. An KG and JR Jones. 2000a. Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiol. 436:179-189 https://doi.org/10.1023/A:1026578117878
  27. An KG and JR Jones. 2000b. Regulating bluegreen dominance in a reservoir innuenced by the Asian monsoon. Hydrobiol. 432:37-48 https://doi.org/10.1023/A:1004077220519
  28. An KG and SS Park. 2002. Indirect innuence of the summer monsoon on chiorophyll-total phosphorous models in re- servoirs:a case study. Ecological Modelling 152: 191-203 https://doi.org/10.1016/S0304-3800(02)00020-0
  29. An KG. S5 Park. KH Ahn and CG Urchin. 2003. Dynamics of nitrogen. phosphorus. algal biomass. and significant implications of regional hydrology on trophic staws. Korean J. Environ. Biol. 24:29-38
  30. Carlson RE. 1976, A trophic state index for lakcs. Limnology and Oceanography 22:361-369 https://doi.org/10.4319/lo.1977.22.2.0361
  31. Dillon PJ and FH Rigler. 1974. The phosphorus-chlorophyll relationship in lake. limnology: eclogical perspective, John Wiley& Sons. New York. pp. 15-41
  32. Forsburg C and SO Ryding. 1980. Eutrophication parameters and trophic state in 30 Swedish waste receiving lakes. Arch. Hydrobiol. 89: 189-207
  33. Ryding SO .Rast W. 1989. The control of eutrophication of lakes and reservoirs. United Nations Educational Scientific and Cultural Organisation. Paris and The Parthenon Publi- shing Group Inc., New Jersey. 314pp
  34. Sakamoto M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62:1-28
  35. Ticehursta JL. Letchera RA and Rissik D. 2008. Integration modelling and decision suppot:A case study of the coastal lake asscssment and management (CLAM) Tool. Mathematics and Computers in Simulation. 78:435-449 https://doi.org/10.1016/j.matcom.2008.01.024
  36. U.S, EPA. 1976 Water quality criteri reserch of the U.S. Environmental Protection agency. Proceeding of an EPA sponsored symposium, EPA-600 (3-76-079): 185
  37. Vollenweider and Kerekes. 1980. the loading concept as bases for controlling philosophy and preliminary results of the the OECD programme on eutrophication. Prog. Walt. Tech. 12:5-38
  38. Wetzel RG. 1990. Reservoir ecosystem: Conclusions and speculations In Reservoir Limnology Ecological Perspective. John Wiley & Son. Inc.. pp. 227-238