Preparation and Characterization of PLGA Scaffold Impregnated Keratin for Tissue Engineering Application

케라틴이 함유된 조직공학적 PLGA 지지체의 제조 및 특성 분석

  • Oh, A-Young (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Kim, Soon-Hee (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Lee, Sang-Jin (Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard) ;
  • Yoo, James J. (Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard) ;
  • Dyke, Mark van (Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard) ;
  • Rhee, John M. (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Khang, Gil-Son (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University)
  • 오아영 (전북대학교 고분자 BIN 융합 연구팀) ;
  • 김순희 (전북대학교 고분자 BIN 융합 연구팀) ;
  • 이상진 (웨이크 포레스트 의과대학 재생의학과) ;
  • 유지 (웨이크 포레스트 의과대학 재생의학과) ;
  • ;
  • 이종문 (전북대학교 고분자 BIN 융합 연구팀) ;
  • 강길선 (전북대학교 고분자 BIN 융합 연구팀)
  • Published : 2008.09.30

Abstract

Keratin is the major structural fibrous protein providing outer covering such as wool, hair, and nail. Keratin is useful as natural protein. We developed the keratin loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds (keratin/PLGA) for the possibility of the application of the tissue engineering using bone marrow mesenchymal (BMSCs). Keratin/PLGA (contents 0%, 10%, 20% and 50% of PLGA weight) scaffolds were prepared by solvent casting/salt leaching method. We characterized porosity, wettability, and water uptake ability, DSC of keratin/PLGA scaffold. We seeded BMSCs isolated from the femurs of rat into the inner core of the hybrid scaffold. Celluar viability were assayed by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) test. We confirmed that keratin/PLGA scaffold is hydrophilic by wettability, and water uptake ability measurement results. In MTT assay results, cell viability in scaffolds impregnated 10 and 20 wt% of keratin were higher than other scaffolds. In conclusion, we suggest that keratin/PLGA scaffold may be useful to tissue engineering using BMSCs.

케라틴은 울, 머리카락, 손톱 등을 형성하는 섬유단백질의 주요성분으로 유용한 생체재료이다. 골수간염 줄기세포를 이용한 조직공학 적용을 위해 Poly(4-lactide-co-glycolide) (PLGA)에 함량별로 케라틴을 함유한 지지체를 용매 캐스팅/염 추출법을 이용하여 제조하였다. 제조된 지지체의 표면과 단면의 형태를 전자현미경(SEM)으로 관찰하고 특성분석을 위해 다공도, 표면 적심성, 물 흡수성, 그리고 열적성질을 분석하였다. 이 후 쥐에서 분리한 골수간엽줄기세포를 지지체에 파종하여 세포의 증식율을 (4,5-dimethylthiazol-2-yl)-2.5-diphenyl-tetrazolium bromide(MTT) 분석방법을 이용하여 측정하였다. 천연/합성 하이브리드 담체인 케라틴/PLGA 지지체는 PLGA 단독으로 제조된 지지체와 비교 시 골수간엽줄기세포의 생장에 유익한 환경을 제공함을 확인하였다.

Keywords

References

  1. S. H. Kim and Y. H. Kim, Tissue Eng. Regen. Med., 3, 13 (2006)
  2. B. L. Seal, T. C. Pterom, and A Panitch, Mater. Sci. Eng., 34, 147 (2001) https://doi.org/10.1016/S0927-796X(01)00035-3
  3. J. E. Babensee, L. V. Mclntire, and A. G. Mikos, Pharm. Res., 17, 497 (2000) https://doi.org/10.1023/A:1007502828372
  4. F. Wen, S. Chang, Y. C. Toh, S. H. Teoh, and H. Yu, Mater. Sci. Eng., 27, 285 (2007) https://doi.org/10.1016/j.msec.2006.05.007
  5. G. Khang, M. S. Kim, B. H. Min, I. W. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 416 (2006)
  6. W. H. Wong, D. J. Mooney, and A. Atala, Synthetic Biodegradable Polymer Scaffolds, Boston, MA, Birkhauser, Chap. 4 (1996)
  7. L. Alonso and E. Fuchs, Cell Sci., 119, 391 (2006) https://doi.org/10.1242/jcs02793
  8. P. Sierpinskia, J. Garrettb, J. Ma, P. Apel, D. Klorig, T. Smith, L. A. Koman, A. Atala, and M. v. Dyke, Biomaterials, 29, 118 (2008) https://doi.org/10.1016/j.biomaterials.2007.08.023
  9. K. S. Stenn, S. M. Prouty, and M. Seiberg, J. Dermatol. Sci., 7, 109 (1994) https://doi.org/10.1016/0923-1811(94)90042-6
  10. K. Krause MD and K. Foitzik MD, Semin. Cutan. Med. Surg., 25, 2 (2006) https://doi.org/10.1016/j.sder.2006.01.002
  11. A. Tachibana, Y. Furuta, H. Takeshima, T. Tanabe, and K. Yamauchi, Biotechnology, 93, 165 (2002) https://doi.org/10.1016/S0168-1656(01)00395-9
  12. C. M. Agrawal, G. G. Niederauer, and D. M. Micallef, Encyclopedic Handbook of Biomaterials and Bioegineering, 2, 1055 (1995)
  13. S. H. Kim, K. S. Park, B. S. Choi, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006)
  14. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2006)
  15. J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004)
  16. Y. K. Ko, S. H. Kim, J. S. Jeong, J. S. Park, J. Y. Lim, M. S, Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 505 (2007)
  17. H. W. Shin, S. H. Kim, J. W. Jang, M. S. Kim, S. H. Cho, H. B, Lee, and G. Khang, Polymer(Korea), 28, 194 (2004)
  18. B. Wang, J. Han, Y. Gao, Z. Xiao, B. Chen, X. Wang, W. Zhao, and J. Dai, Neurosci. Lett., 421, 191 (2007) https://doi.org/10.1016/j.neulet.2007.04.081
  19. C. M. Kim, S. M. Kim, S. H. Kim, I. W. Lee, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 60 (2006)
  20. E. J. Kim, J. H. Song, M. S. Kim, J. M. Rhee, C. H. Han, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 1, 41 (2004)
  21. S. Webster, Webster's Biomedical Engineering Handbook, John & Wiley Press, NY, p. 376 (2006)
  22. R. Q. Brown, A. Mount, and K. Burg, J. Biomed. Mater. Res. A, 74, 32 (2005)