DOI QR코드

DOI QR Code

Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System

Bi(NiaX1-a)O3-PbTiO3 계 압전 신조성(X-Ti,Nb)의 내전압 특성 향상

  • Choi, Soon-Mok (Testing and Certification Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Seo, Won-Seon (Testing and Certification Division, Korea Institute of Ceramic Engineering & Technology)
  • Published : 2008.04.30

Abstract

Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.

Keywords

References

  1. R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S. E. Park, "New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on $Bi(Me)O_3-PbTiO_3$ Ceramics" J. J. Appl. Phys., 40 5999- 6002 (2001). https://doi.org/10.1143/JJAP.40.5999
  2. Nicola A. Hill and Karin M. Rabe, "First-principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite," Phys. Rev., B 59 8759-69 (1999). https://doi.org/10.1103/PhysRevB.59.8759
  3. R. E. Eitel, C. A. Randall, T. R. Shrout, and S. E. Park, "Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution $(1-x)BiScO_3-xPbTiO_3$," J. J. Appl. Phys., 41 2099-104 (2002). https://doi.org/10.1143/JJAP.41.2099
  4. R. E. Eitel, S. J. Zhang, T. R. Shrout, C. A. Randall, and I. Levin, "Phase Diagram of the Perovskite System $(1-x)BiScO_3-xPbTiO_3$," J. Appl. Phys., 96 2828-31 (2004). https://doi.org/10.1063/1.1777810
  5. C. A. Randall, R. E. Eitel, C. Stringer, T. H. Song, S. J. Zhang, and T. R. Shrout, "High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals," (S. Trolier-McKinstry, Ed. 2004).
  6. M. R. Suchomel and P. K. Davies, "Predicting the Position of the Morphotropic Phase Boundary in High Temperature $PbTiO_3-Bi(B'B")O_3$ Based Dielectric Ceramics," J. Appl. Phys., 96 [8] 4405-10 (2004). https://doi.org/10.1063/1.1789267
  7. Y. Shimojo, R. Wang, T. Sekiya, T. Nakamura, and L.E. Cross, "MPB Phase Diagram and Ferroelectric Properties in the $PbTiO_3-BiScO_3$ System," Ferroelectrics, 284 121-28 (2003). https://doi.org/10.1080/00150190390204763
  8. T. Song, R. E. Eitel, T. R. Shrout, C. A. Randall, and W. Hackenberger, "Piezoelectric Properties in the Perovskite $BiScO_3-PbTiO_3-(Ba,Sr)TiO_3$ Ternary System," J. J. Appl. Phys., 42 5181-84 (2003). https://doi.org/10.1143/JJAP.42.5181
  9. Y. Inaguma, A. Miyaguchi, M. Yoshida, and T. Katsumata, "High-pressure Synthesis and Ferroelectric Properties in Perovskite-type $BiScO_3-PbTiO_3$ Solid Solution," J. Appl. Phys., 95 [1] 231-35 (2004). https://doi.org/10.1063/1.1629394
  10. C. A. Randall, R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward, and I. M. Reaney, "Investigation of a $High-T_C$ Piezoelectric System: $(1-x)Bi(Mg_{1/2}Ti_{1/2})O_3-(x)PbTiO_3 $," J. Appl. Phys., 95 [7] 3633-39 (2004). https://doi.org/10.1063/1.1625089
  11. D. K. Kwon, C. A. Randall, T. R. Shrout, and M. T. Lanagan, "Dielectric Properties and Relaxation in $(1-x)BiScO_3-xBa(Mg_{1/3}Nb_{2/3})O_3$ Solid Solutions," J. Am. Ceram. Soc., 87 [6] 1088-92 (2004). https://doi.org/10.1111/j.1551-2916.2004.01088.x
  12. R. R. Duan, R. F. Speyer, E. Alberta, and T. R. Shrout, "High Curie Temperature Perovskite $BiInO_3-PbTiO_3$ Ceramics," J. Mat. Res., 19 [7] 2185-93 (2004). https://doi.org/10.1557/JMR.2004.0282
  13. C. J. Stringer, R. E. Eitel, T. R. Shrout, C. A. Randall, and I. M. Reaney, "Phase Transition and Chemical Order in the Ferroelectric Perovskite $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ Solid Solution System," J. Appl. Phys., 97 024101 (2005). https://doi.org/10.1063/1.1834724
  14. Y. Inaguma, A. Miyaguchi, and T. Katsumata, "Synthesis and Lattice Distortion of Ferroelectric/antiferroelectric Bi(III)-containing Perovskites," Mat. Res. Soc. Symp. Proc., 755 471-76 (2003).
  15. G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D.E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, "Oxygen Nonstoichiometry and Dielectric Evolution of $BaTiO_3$. Part II Insulation Resistance Degradation under Applied dc Bias" J. Applied Physics, 96 7500-508 (2004). https://doi.org/10.1063/1.1809268
  16. G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D.E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, "Oxygen Nonstoichiometry and Dielectric Evolution of BaTiO3. Part I Improvement of Insulation Resistance with Reoxidation," J. Applied Physics, 96 7492-99 (2004). https://doi.org/10.1063/1.1809267