Modelling Study on Sustainable Resources Management System Using Material Flow Analysis(MFA) in Korea

Yu-Jeong Kim*, Seong-Yong Kim† and Eunnyeong Heo‡

*Korea Institute of Geoscience and Mineral Resources (KIGAM) Gwahang-no 92, Yuseong-gu, Daejeon, 305-350 Korea
†Seoul National University Gwanang-no 599, Gwanak-gu, Seoul, 151-744, Korea

Sustainable resource management(SRM) is regarded as the core strategy to achieve Dematerialisation and Decoupling of economic growth from the use of natural resources and environmental degradation. This paper presents status SRM policy and research in worldwide, and analyzes decoupling of economic activity from energy consumption of domestic manufacturing, using decoupling factor. Also This paper suggests methodologies and strategies of SRM in Korea. SRM is established through various analysis and survey as following; forecasting of resource demand, material flow analysis and value chain analysis, resource market structure analysis. Through these analysis, we can obtain hot-spot and solution of environmental burden, recycling market management, recycling technology and best-optimal supply rate of primary and secondary resource. In Korea, resource management system must be linked with national and regional material flow analysis, and it is necessary to make SRM-law of national dimension for effective run of sustainable resource management system.

Key words: Material flow analysis, Decoupling, Dematerialization Decoupling factor, Sustainable Resource Management

1. 서론

20세기 이후의 경제성장 위주 사회발전은 자원고갈을 현실화하였고, 환경과의 심각한 대립과 개발의 불균형으로 인한 폐해가 본격적으로 나타나기 시작했다. 유럽환경청(The Ecological Footprint(2005))에 따르면 지구의 지정능력(Earth's biocapacity)을 유지하기 위해서는 1인당 ecological footprint가 1.8ha를 초과할 수 없는 현재 세계적으로 1인당 평균 2.2ha에 이르고 있다. 또한 전 세계에서 지구가 연간 생산할 수 있는 자원의 25%를 초과해서 사용하고 있는데, 이는 2003년을 기준으로 우리가 사용하는 자원을 생산하기 위해 지구

*Corresponding author: kyj@kigam.re.kr
가 1년 3개월을 일해야 함을 드린다. 그리고 UN의 '21세기 환경시스템 평가보고서(UN 2005 Millennium Ecosystem Assessment)'에 의하면 1960년대 초기에 비해서 모든 환경시스템이 23% 감소되었으나, 천연자원에 대한 수요는 같은 기간에 70%가 증가하였다. 이러한 현상은 지속가능한 발전에 역행하는 것으로 이에 대한 대책 마련이 절실한 상황이다.

자의 지역적 관리성 및 회소성 증가와 더불어 최근 5년간(2002.3-2007.3) 펭스는 2배, 인들은 10배, 구리는 9배 등 자원가격 급등하는 동 원자재의 가격상승이 계속되고 있고 기후변화 협약과 같은 각종 환경자동차 및 유럽의 환경책임 규제 등으로 인해 자원이 이제 중요한 생산요소의 하나로 여겨지며, 이에 따라 환경성과 경제성은 해결하는 핵심요소로 작용하고 있다.

따라서 자원 생산성(Resource productivity), 생태경제 효율성(Eco-efficiency), 자원 절약, 온실가스 배출 저감 등 환경성과 경제성을 모두 갖춘 해결책이 바로 지속가능한 자원관리모형의 구축이라고 판단할 수 있다. 우리에게 필요한 것은 더 많은 자원보다는 더 높은 이용 효율성이다. 지속가능한 자원관리는 원료추출, 생산, 소비, 재활용 및 처분 등 제품의 전생애주기(life-cycle)에 걸쳐 발생하는 환경적 외부효과를 내재화함으로써 환경보전과 동시에 자원사용의 경제적 효율성을 제고하기 위해 반드시 구현되어야 하며, 환경적 지속성, 경제 성장, 사회적 형평성 등이 균형을 이뤄야만 가능한 것이다(Kim et al., 2006).

최근의 지속가능한 자원관리를 위한 연구개발 등을 수행하는 국내기관은 국립환경과학원, 국가정정생산지원센터, 한국지질자원연구원, 환경컨설팅 기업 등이 있다. 환경부는 물류체계별로 대상으로 유통물질관리를 위한 SFA(SFA: Substance flow analysis)를 수행한적이 있으며, 수년전부터 물질호류계정(EW-MFA: Economic Wide Material Flow Accounts)을 바탕으로 하는 환경통합계정을 구축하기 위한 작업을 진행하고 있다. 그리고 현재는 국립환경과학원의 폐기물자원화를 위한 연구, 국

![Figure 1. Strategy of sustainable resource management.](image-url)
가형정생산지원센터의 기업중심/제품중심의 전생애주기 평가(LCA; Life-cycle Assessment), 공급망 관리시스템 SCM(Supply Chain Management), 에코 디자인(Eco-Design), 물질호흡분석(산업 및 혁생, 비칠공속, 화유류 속)에 관한 연구 등이 진행되고 있고 한국지질자원연구원에서는 국가주요광물자원 수급통계 구축 및 관리 및 물질호흡기초연구를 수행하고 있다. 또한 환경 컨설턴트 기업들은 정부수탁에 의한 순환자원관리 및 지속가능 발전과 관련된 환경정책기획과 제 등의 주요 수행하고 있다.

2. 디커플링을 위한 지속가능자원관리(SRM)

2.1. SRM을 통한 디커플링과 국내 디커플링 분석

앞서 논의한 지속가능한 성장을 위해서는 환경 부담을 경제활동에서 분리하는 디커플링(Decoupling)과 인간의 효율 및 경제활동을 물질 의존으로부터 탈각하는 탈물질화(De-materialisation)가 주요 전략이 되며, 이러한 전략을 수행하기 위해서는 지속가능한 자원관리가 필수적이다. 그리고 지속가능한 자원관리를 위해서는 자원생산성 제고, 환경성 제고, 합리적 관리가 필요하고 이러한 것은 정부, 산업, 민간이 다각적 측면에서 자원집중도를 낮추며 생태경제효율성을 높일 수 있는 제도 개선 및 기술개발, 신소재개발 그리고 에코라벨이나 녹색구매 등의 소비매천화가 필요하다. 즉 지속가능한 자원관리의 성공여부는 환경으로 인한 외부효과를 반영하고, 자원호흡의 지속 가능성을 지원하며 정부, 생산 및 유통업체, 소비자, 재활용/소재업체가 함께 해결할 수 있는가에 달려있는 것이다(Fig. 1).

OECD에서는 2001년에 디커플링을 2010년까지의 OECD환경전략의 주요과제로 정하였다. 주어진 기간에 환경부담 증가율이 경제활동(즉 GDP의 증가보다 낮을 때 디커플링이 일어나다고 말할 수 있다. 그러나 자연자원의 절대적인 사용량은 여전히 높은 상태로 이러한 상대적인 디커플링현상으로 충분하지 않다. 그래서 "절대적 디커플링(Absolute decoupling)"과 "상대적 디커플링(Relative decoupling)"의 구분하는 것이 필요하다. 경제변수가 상승하였을 때 환경 부담이 감소하였거나 저체성태면 "절대적 디커플링"이 일어났다고 하여, 환경 부담은 증가하였지만 그 증가율이 경제성장변수보다 낮을 때에는 "상대적 디커플링"이 일어났다고 할 수 있다(Fig. 2). 또한 디커플링 지표는 자원효율성(Resource efficiency), 자원집중도(Resource intensity), 자원 생산성과 같은 연관관계를 가지고 있다. 이러한 이유 등에 의해 지속가능한 자원관리가 디커플링을 위한 주요방향으로 여겨진다. OECD에서는 다음 수식 (1)과 (2)와 같은 decoupling factor를 통해 디커플링 여부를 확인하고 있다.

![Fig. 2. Basic concept of sustainable resource management.](image)

\[
\text{Decoupling ratio} = \frac{(EP/DF)_{\text{end of period}}}{(EP/DF)_{\text{mid of period}}}
\]

\[
\text{Decoupling factor} = 1 - \text{decoupling ratio}
\]
Table 1. Decoupling in Korea, Japan and Germany

<table>
<thead>
<tr>
<th>Decoupling indicators for specific sectors</th>
<th>Korea</th>
<th>Japan</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>Total GHG-emission per unit of GDP</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>Total CO2-emission per unit of GDP</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>Air pollution</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Total NOx emission per unit of GDP</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Total SOx emission per unit of GDP</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Total emission of fine particulate matter per unit of GDP</td>
<td>○</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Total VOC emission per unit of GDP</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>Water quality</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Population NOT connected to sewage treatment plants versus total population</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Discharges of N and P from households into the environment versus total population</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Waste management</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Municipal waste going to final disposal versus PFC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amount of glass NOT collected for recycling versus PFC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Material use</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Direct Material Input(DMI) per unit of GDP</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural resource</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Total freshwater abstraction per unit of GDP</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amount of paper/cardboard NOT recycled for versus GDP</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Energy related emissions per unit of GDP of CO2</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NOx</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SOx</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2 Emission from electricity</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>NOx emission from manufacturing industry vs manufact. VA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2 emission from energy intensive industry versus VA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Waste generation by manufacturing industry vs manufact. VA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Freshwater abstraction by manufacturing industry vs VA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*edited from OECD(2002)
*VA: Value Added
*○=decoupling; ×= no decoupling; = no data

2002년 OECD에서는 OECD국가들 대상으로 기후변화, 대기오염, 수질, 폐기물관리, 물질사용, 에너지 등과 그 외 다른 여러 환경부담요인(EP)에 따른 각종 디커플링 지표를 조사한 바 있다(Table 1). 그 결과를 보면 독일은 거의 대부분의 지표에 있어서 디커플링이 일어났으며 한국의 경우 에너지집중도가 높은 산업의 이산화탄소발생에 있어서는 아직 디커플링이 일어나지 않았으나, 산업계의 폐기물발생량에 있어서는 절대적 디커플링이 일어났다. 그러나 우리나라의 전반적으로 폐기물처리에 있어서는 디커플링이 일어나지 않았음을 확인할 수 있었으나, 자원사용 부문에 있어서는 상당부분 대여기 부족으로 아직 디커플링이 일어나지 않았음을 확인할 수 있었다.

이러한 차이에따라 자연사용 동계목록으로 연결되며, 이에 대한 관리 방안은 제 4장에서 논하기로 하겠다.

디커플링 현상을 분석하기 전에 우선 국내 제조업의 에너지 집중도를 살펴보면, 국내 제조업의 에너지 집중도는 1981년 0.64TOE/백만원에서 2006년 0.40TOE/백만원으로 감소하여 제조업 내 에너지 효율성이 전반적으로 개선되었다고 할 수 있으며, 특히 비금속부문에서 에너지 집중도 감소효과가 가장 높은 것으로 나타났다. 그리고 2006년 기준으로 석유화학부문이 1.18TOE/백만원으로 에너지 집중도가 가장 높으며, 조문금속·기계장비부문이 0.05TOE/백만원으로 가장 낮은 것으로 나타났다(Table 2).

그리고 기별로 국내 제조업 decoupling factor(산정한 결과 모두 0~1사이의 값을 가지며 모든 부문에서 디커플링현상이 나타나 있다. 응식료품부와 조립금속·기계장구부는 1981년부터 1990년에서 발생한 디커플링보다 최근 1990년부터 2006년 발생한 디커플링의 정도가 큰 반면, 그 외 업종은 그 전시기보다 디
물질효율분석을 이용한 국내 지속가능한 자원관리 시스템 모형 연구

Table 2. Energy intensity of manufacturing sector in Korea

<table>
<thead>
<tr>
<th>Year</th>
<th>Manufacturing</th>
<th>Food products & Beverages</th>
<th>Textile, Apparel & Leather</th>
<th>Wood, Paper & Printing</th>
<th>Coal, Chemical & Petroleum</th>
<th>Non-Metallic Mineral Product</th>
<th>basic metals</th>
<th>Fabricated Metal, Machinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1.47</td>
<td>0.63</td>
<td>0.70</td>
<td>0.95</td>
<td>2.22</td>
<td>4.11</td>
<td>4.02</td>
<td>0.24</td>
</tr>
<tr>
<td>1985</td>
<td>0.88</td>
<td>0.45</td>
<td>0.47</td>
<td>0.53</td>
<td>1.30</td>
<td>2.22</td>
<td>2.18</td>
<td>0.17</td>
</tr>
<tr>
<td>1990</td>
<td>0.72</td>
<td>0.37</td>
<td>0.45</td>
<td>0.49</td>
<td>1.31</td>
<td>1.40</td>
<td>1.50</td>
<td>0.13</td>
</tr>
<tr>
<td>1995</td>
<td>0.58</td>
<td>0.26</td>
<td>0.37</td>
<td>0.32</td>
<td>1.23</td>
<td>1.27</td>
<td>1.01</td>
<td>0.09</td>
</tr>
<tr>
<td>2000</td>
<td>0.51</td>
<td>0.15</td>
<td>0.33</td>
<td>0.30</td>
<td>1.32</td>
<td>0.96</td>
<td>0.86</td>
<td>0.08</td>
</tr>
<tr>
<td>2005</td>
<td>0.48</td>
<td>0.17</td>
<td>0.37</td>
<td>0.36</td>
<td>1.33</td>
<td>0.88</td>
<td>0.89</td>
<td>0.06</td>
</tr>
<tr>
<td>2006</td>
<td>0.45</td>
<td>0.16</td>
<td>0.33</td>
<td>0.34</td>
<td>1.32</td>
<td>0.90</td>
<td>0.87</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*unit: TOE/million won

Table 3. Decoupling factors(Energy use and Economic growth) of manufacturing sector in Korea

<table>
<thead>
<tr>
<th>Year</th>
<th>Manufacturing</th>
<th>Food products & Beverages</th>
<th>Textile, Apparel & Leather</th>
<th>Wood, Paper & Printing</th>
<th>Coal, Chemical & Petroleum</th>
<th>Non-Metallic Mineral Product</th>
<th>basic metals</th>
<th>Fabricated Metal, Machinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981-1990</td>
<td>0.51</td>
<td>0.41</td>
<td>0.36</td>
<td>0.49</td>
<td>0.41</td>
<td>0.66</td>
<td>0.63</td>
<td>0.44</td>
</tr>
<tr>
<td>1990-2006</td>
<td>0.37</td>
<td>0.56</td>
<td>0.26</td>
<td>0.31</td>
<td>0.00</td>
<td>0.36</td>
<td>0.42</td>
<td>0.63</td>
</tr>
<tr>
<td>2001-2006</td>
<td>0.69</td>
<td>0.74</td>
<td>0.52</td>
<td>0.65</td>
<td>0.40</td>
<td>0.78</td>
<td>0.78</td>
<td>0.80</td>
</tr>
</tbody>
</table>

cuppies, 환경적으로 천연자원의 재활 및 재조정은 예
너지 소비 및 환경 부담을 수반하므로 환경 부담을 줄
이기 위한 노력은 자원소비 감소와 작업될 수밖에
없다. 따라서 빠르게 성장하는 글로벌 경제의 산업계에
서는 비용을 절감하고 천연자원의 지속가능한 자원소모를
위한 물질효율화기술(Material efficient technologies)
와 관리가 고조되고 있다. 물질효율화기술인 '산출물의
능을 계산하지 않고도, 재료 산출물을 생산하기 위
한 소비되는 천연자원의 양을 줄이는 기술 및 방법 및
서비스'를 의미한다. 재활용기술, 효율적 재조성술, 생
태학적 전성 주의, 나노기술, 재생자원의 물질대체, 재
산출기술(제조) 등이 이에 속한다. 현재 물질효율화기
술에 있어서 그 노하우와 각 산업분야에서의 경제화
(Economisation)가 여전히 낮은 편이며, 에너지효율 기
술과는 비교할 수 없을 정도로 낮다. 이는 과 분율을
통한 효율화의 잠재성이 이미 효율화가 안정화된 에너
지 비례 높은 것을 의미하기도 한다. 이러한 차이에
서 독일연방경제기술(BMWI)의 물질효율국(DEMEA)
에서는 물질을 통한 효율화의 잠재성을 인정하고 독일
의 물질효율상도의 앞으로 현재보다 20%까지 감소가능
하다고 예상하고 있다.

기능진보 및 물질효율화기술은 미래자원수요에 중요
한 요소로 작용하여 경제성장의 지속성과 환경보전 및
사회균형발전에 결정적 역할을 한다. 자원수요예측에
 있어서 기술진보의 효과는 수요와 공급 균형을 장기적
으로 환경시키는 수단으로 활용될 수 있다. 기술진보,
자원재활용, 가격변동 등을 반영한 미래의 천연자원 수요에 대한 예측 및 천연자원별 경제성장, 환경문제, 규제 등의 수요변화요인을 살펴봄으로써 자원별로 지속 가능한 전략을 도출할 수 있을 것이다. 이러한 접근을 통해 과거에 빈번히 있었던 자원의 고갈로 인한 자원 가격 급상승을 피할 수 있다. 이런 차원에서 유럽은 이미 문화환경기술개발에 많은 노력을 기울이고 있다.

독일환경청의 환경기술 현황에 대한 분석 보고서(Greentech made in Germany)에 따르면 독일과 유럽이 재활용기술에 있어 강한 우위를 지니고 있다. 이것은 미래 재활용자원에 대한 경쟁에서 있어서 유리한 위치를 점취할 수 있다.

또한 기술적 요소 외에도 정책은 천연자원의 지속가능한 사용을 위한 기술적 진보의 가이드로써 강력한 힘을 발휘할 수 있을 것이다.

3. 극물질환류의 관리

3.1. EU의 물질관리 및 환경규제 동향

EU는 지속가능한 자원관리를 위한 공동대응을 마련하고 있다. 2006년 6월에 유럽위원회에서는 지속가능한 발전을 위한 원칙에 대한 가이드를 제작하였다(Guiding principles for sustainable development adopted by the European Council of 15/16, 2006. 06). 이는 지속가능한 발전을 위한 기본적인 사항들을 담고 있으며 특히 보다 더 좋은 생활과 삶을 강조하고 세대와 세대 그리고 같은 세대에서의 상호 연대를 강조하고 있다.

그리고 EU의 지속가능한 발전전략 ‘하나의 실천을 위한 기반조성’을 검토하는 의견서(Communication on the review of the EU Sustainable Development Strategy - a platform for action)에서 유럽일정위원회는 지속가능한 자원관리를 위해 다음과 같은 사항들을 제시하고 있다.

- 생명공학 효과적이며 자원효율적인 방법을 찾기 위한 연구와 기술에 대해 지속적으로 투자해야 한다.
- 자연자원에 대한 높은 의존성을 감소시키기 위해 환경 효율적이며 에너지지역 부문 기술에서 새로운 시장에서 첨단화 위치를 찾아야 한다.
- 자연효율성을 점고 재생이 불가능한 자연자원에 대한 전반적인 사용을 강소시키는 일과 원료물

Table 4. International environmental regulations

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Effectuation time</th>
<th>Related industry</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEE</td>
<td>'05-07</td>
<td>Electrical and Electronic Equipment</td>
<td>- Targets for 10 Categories of electrical and electronic equipment (*'07.01.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*Recovery: 70-80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*Reuse/Recycle: 50-70%</td>
</tr>
<tr>
<td>RoHS</td>
<td>'06.07</td>
<td>Electrical and Electronic Equipment</td>
<td>- The restricted substances: cadmium, lead mercury, hexavalent chromium, PBBs, or PBDEs</td>
</tr>
<tr>
<td>ELV</td>
<td>'03-'15</td>
<td>Automobile</td>
<td>- Recovery: 85%, Reuse/Recycle: 80% (*'06.01.01)</td>
</tr>
<tr>
<td>EuP</td>
<td>'07.10</td>
<td>Electrical and Electronic Equipment</td>
<td>- Requirement of Eco-design for energy using Products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Self declaration</td>
</tr>
<tr>
<td>EURO II, III, IV</td>
<td>'96, '00, '05</td>
<td>Automobile</td>
<td>- Compulsory to install on-board diagnostic (OBD) systems in private and light commercial vehicles</td>
</tr>
<tr>
<td>REACH</td>
<td>'07.06-</td>
<td>All industry</td>
<td>- Subject substances: Chemical substances that are manufactured and imported into the EU in quantities above 1 ton per year</td>
</tr>
</tbody>
</table>

*Abbreviations:
WEEE: Waste Electrical and Electronic Equipment
RoHS: Restriction of the use of certain Hazardous Substance in electric and electronic equipment
ELV: End-of-Life Vehicle Directive
EuP: Ecodesign for Energy using Products

입을 정부당국에서 산업계로 이관하는 가장 강력한 환경규제법규이다. 이상의 법률들은 우리나라 자동차산업 및 전기·전자산업에 아주 큰 영향을 미치는 것으로 국내에서도 대책을 마련하고 중소기업을 대상으로 각 내용 및 대응전략 등에 대한 교육을 실시하고 있다.

EU가 추진하는 에너지 효율 실천계획안에 따르면, 역내 25개 회원국의 에너지 사용량을 2020년까지 20% 절감하고자 한다. 이 실천계획은 가스, 석유 및 전기에 대한 수요가 세계적으로 증가하는 요충에 유럽의 에너지 소비가 줄이는 일련의 방법들을 제시하고, 유럽이 비효율적인 사용으로 인해 적어도 에너지의 20%를 낭비하고 있으며, 2020년까지 1,000억 유로(119조 원)를 상쇄하는 직접비용이 초래될 것임을 지적하고 있다. EU 집행위원회는 이 계획이 EU지역 내에 안정적인 에너지 공급을 확보하고 온실가스 배출을 감소시키며, 기업의 친환경 제품살게를 유도하여 혁신과 기술발전을 촉진할 것으로 기대하고 있다. 그리고 이를 탄소거래가 수익창출과 환경보호에 도움이 되고 있다. EU는 온실가스 배출권 가격이 2006년 20억 유로로 2배 성장하였는데, 이는 기후변화 방지에 큰 역할할 수 있다는 제도로서 조명 받고 있다. 기업과 국가들은 탄소시장에서 이산화탄소 같은 온실가스 배출권의 구매가 가능하며, 여기에 강력한 기후변화 정책과 목표의 도입이 증가함에 따라 탄소시장이 형성되고 있다. 탄소배출권 증권신탁은 단순 중개에서 벗어나 생산업체로부터 직접 배출권을 구매하고 있으며, 대기 업들이 현재 보여주는 전산이야말로 탄소 거래가 크게 성장할 것임을 반증할 것이다.

3.2. 일본의 물질관리 사례 분석

일본의 물질 관리를 위한 주요 시행방안은 통합적으로 진행되고 있다. 각 구체방안들 충돌을 위해 법규 및 목표표를 설정하고, 폐기물 절감 및 적정처리를 촉
전하고 있다. 이에 대응하여 산업체는 상품디자인 및 생산단계에서 3R고려항목을 중점하고, 녹색 구매 및 에코 라벨을 증진하며, 자발적인 설계계획을 준비·수행하고 있다. 그리고 이에 당사자의 협력과 Eco-town 프로그램을 운영하고, 디자인과 제조단계에서 3를 이용한 설계목표를 수행하며, 제품분류별, 부문별 재활용 지침 (현재 35 종류, 182가지 등)을 마련하여 물질흐름 분석 등을 실시하고 있다(일본 환경성, 2005).

일본은 물질흐름분석(Material flow analysis)기 초하여 자원관리의 기본방향을 모색하고 있으며 물질흐름연구가 매우 활발히 진행되고 있다. 일본 국립환경연구원(NIES: National Institute for Environmental Studies, Japan)에 의한 순환자원을 포함한 물량 투입산출표 구조와 DB 구축, 산업 연관표와 폐기물 통계와의 결합에 의한 폐기물 발생구조의 분석, 물질흐름에 기초한 순환자원의 개발 등이 있다. 일본 국립재료연구소 (NIMS: National Institute for Materials Science)는 철광석과 같은 개발 자원이 가진 환경배양(Ecological Rucksack)의 개념을 이용하여 전 생애주기 동안의 자원 사용량을 산출하여 소재의 지속가능성을 평가하고 있다. 그리고 가와와키 생태도시에서의 산업간 물질흐름 정량 표준화를 통한 GIS데이터베이스 구축과 철강 산업, 석유화학산업의 MFA적용 등 부문별 적용, E-waste, 폐자동차, 음식물 쓰레기 등 폐기물에 대한 MFA, 철, 알루미늄, 구리 등 금속자원에 대한 SFA, 탄소, 황, 질소, 인, 중금속 등 SFA, LCA 및 IOA와 결합한 MFA연구와 경제산업성이 진행하고 있는 의류, 식품, 금속부품소재, 인쇄, 주물, 전기전자제품, 화학제품 등의 제품별 MFA연구가 있다. 그리고 Nitto Denko 등 기업 및 경제산업화는 물질흐름자원화계(MFCA: Material Flow Cost Accounts) 개발·보급 조사사업을 실시하고 있다. 아울러 일본 경제산업성은 친환경 소재와 물질흐름 회계에 관한 연구를 국제적으로 연대하여 집중적으로 추진하고 있다. MFCA 보급 조사 활동 사업자 단체 공모 실시를 통해 MFCA먹보의 각 지역 보급 세미나, 실무자 연수실시, 도입실증사업 등이 수행되고 있다.

4. 물질흐름분석을 이용한 지속가능한 자원관리 모형

자원순환형 사회를 구축하기 위해 국내에서도 여러 노력들이 이루어지고 있는 터라 제기물관리에 치우쳐 있다. 이에 최근에는 2차자원의 이용률을 높이고 산업의 자원생산성을 높이기 위한 지속가능한 자원관리 시스템 마련을 통해 자원순환형 사회로 가기 위한 노력이 환경부와 산자부를 중심으로 일고 있다. 환경부에서는 그간 GDP 산출, 자원순환 기반계획 등의 사 업이 추진되고 있으며, 산업재정부는 산업별 자원생산성 향상을 위한 MFA 프로젝트를 추진 중이다.

그러나 현재 국내 자원관리는 재원시장 변동에 따른 위험을 극복할 수 있는 체계적인 관리 시스템이 구축되지 않았고, 환경성과 경제적인 비용을 고려하는 지속가능성이 지자체정에 포함되지 않았으며, 자원활용에 따라 형성되는 개발시장 및 그에 대한 총체적인 파악 이 미흡하다고 할 수 있다. 우리 경제 특성을 감안할 때 개발된 많은 물질흐름지표 가운데서도 통계 수집이 용이한 적절한 지표를 선택하고 이를 통한 목표설정 및 관리가 되어야 효과적인 정책목표 달성이 가능할 것이다(Kim et al., 2006). 그리고 영국의 대표적 물질흐름분석 사업인 ‘Mass balance UK’에 따르면 자원효율성 제고를 위한 방안으로 시장활성화, 기술개발, 규제강화 등 시장활성화를 통한 것이 가장 큰 우선순위를 가지고 있다(Fig. 3). 그러나 국내 재활용시장의 활 성화가 이루어지지 못하고 있다. 국내 재활용시장은 부 가가치를 생성하는 산업이 아닌 처리산업으로만 인식 되고 있으며, 재활용시장의 관리가 이루어지고 있지 않 아 업체 간 소득 불균형 및 관련정책의 부재가 재활용 시장 활성화에 결림들로 작용하고 있다. 그리고 현재 EU 및 일본 등에 비해 국내 재활용기술과 재활용시장에 관한 연구와 자료가 상대적으로 부족하다고 할 수 있다.

바람직한 정책방안으로는 첫째, 천연자원과 재생자 원을 연계할 수 있는 자원관리 시스템을 갖추어야 하며, 이를 위한 첫 번째 단계로서 국가 자원통계구축 및 확충이 절도되어야 할 것이다. 자원지적팀 및 통 계관리는 수입 형태 변화이나 산업구조 변화 등의 수급 구조에 임감하여 생산부터 소비까지의 소비를 파악하기 위한 통계 조사의 확충을 검토하고, 조사 대상, 조 사항목 등에 대해 확대하여, 수급 동향의 실태를 파악 가능한 통계 조사의 체계로 정비하여야 한다. 둘째, 자 원순환 관련 기본법에 대한 논의에서 지속가능한자원관리(SRM) 기본원칙이 포함되어야 할 것이다. 그 동안 관련 입법을 위한 노력이 2004년이래로 지속되어 왔는데, 자원순환형 경제사회성형 충전기법안 발재, 자원의 질적과 재활용활동에 관한 법령 개정 추진, 자원순환 경제사회성형 기본법안 입법예정 등이 있었다.

국내 지속가능한 자원관리 시스템을 위해 다음과 같은
이 개발자원관리 시스템과 통합자원관리 시스템 모형을 제시하고자 한다.

개발자원관리 시스템은 천연자원 공급분석, 재생자원 공급분석, 국내의 자원가격 동향, 자원 예상수요 분석, 자원관련 기술개발 동향 등을 통해 구축되어야 한다. 세부적으로 천연자원 공급분석은 전 세계, 국가 및 지역별 매장량/예상 공급량을 추정하고 국내의 자원개발 기술 및 정책추진 현황을 파악한다. 재생자원 공급분석으로 국내외 폐기물 발생량 및 회수 가능성을 진단하고, 국내외 재활용 기술현황 및 재활용 비용을 추정하는 것이다. 국내외 자원가격 동향은 개도국 경제성장 변화추이 예상을 감안하여 사양산업과 신규산업 업무구조를 바꾸며 자원수요 공급변화를 예상하고, 자원 예상수요 분석으로 새로운 추진이 진단되는 전략산업에 필요한 요소자원관리 현황검토와 함께 새로운 용도로 사용되는 자원에 대한 관리 현황 검토가 이루어져야 한다.
자원관리 기술개발 동향에서는 재생소재 개발을 위한 기술개발 동향 및 환경규제(RoHS, REACH 등)로 인한 자원시장 변화 예측이 이루어져야 한다.

바람직한 개발자원관리 시스템(안)은 국내외 수급동향 분석에서 시작되어 수요추정, 물질흐름 분석, 가치사슬로 나누어진다. 수요추정은 정기수요, 재배급반영, 기술동향 반영하여야 하며, 물질흐름 분석은 국내외 물질흐름 경로의 확인으로 재배급 물질 관리, 재활용 경로 및 재활용률이 도달된다. 가치사슬은 시장구조분석으로서 물질흐름단계별 부가가치 및 경제적 가치를 파악하여야 한다. 개발자원관리는 수요전망으로부터 1차 수요량 예측이 이루어지고, 물질흐름분석을 통한 환경적 문제 해결, 재활용시장구축방안 및 시장의 구조의 문제점 도출, 필요 재활용기술 도출 등의 Hot-spot 도출 및 해결방안모색이 이루어져야, 시장구조분석에 의해 해당물질 및 자원의 경제적 가치가 가능해 진다. 이러한 형태가 개발자원의 지속가능한 자원관리 시스템이라 할 수 있다(Fig. 4).

또한 개발자원의 지속가능한 자원관리 시스템에 의해 바람직하고 통합적인 지속가능한 자원관리 모형을 구축하여야 한다. 이를 위해서는 개발자원관리 시스템과 국가단위, 권역단위의 물질흐름분석을 유기적으로 연계하고, 국가차원의 법제도 및 민이용이 이루어져야 한다. 그리고 통합자원관리는 경제성, 환경성, 기술성을 반영하여 실시하여야 한다. 천연자원 생산 및 소비량 변화 추이, 국내산업 구조 변화 및 주요 자원유동 구조를 파악하고, 또한 폐기물 및 재생 자원기술, 가격 및 수급 변화와 국내외 환경규제에 따른 제품시장 변화, 자원흐름에 따른 관련기관 및 경제 주체를 파악하여야 한다. 그리고 국가적 차원에서 우선 관리해야 하는 대상 물질을 선정하고 이에 대해서는 시장구조, 핵심이해관계자(key player), 관련 정책 및 제도 파악, 자원단위 환경성, 경제성 및 사회성을 포함한 지속가능성 평가가 수행되어야 한다. 한편 국가의 자원관리의 목표를 설
정하고 수행된 결과를 모니터링하기 위한 체계가 갖추 어져야 하며, 그를 나타내는 지표는 국가적 특성을 반영해야 한다. 이를 위해 지금까지의 세계적으로도 같은 지표가 사용되기보다는 국가별로 독자적인 지표를 개발하여 사용하고 있다(Fig. 5).

지역, 국가 간 물질호흡 등을 파악하고 효과적인 제도가 정착하고 지속가능한 자원관리가 이루어지려면 물질의 호흡과 자원의 이용을 측정할 수 있는 지표가 필요하다. 이러한 지표개발 및 지속가능한 자원관리 모형을 구축하는 주요 방법론 중 하나가 물질호흡 분석 (MFA)이다. 이는 유럽 및 일본에서는 그 연구가 활발하고 그 결과를 정책목표 수립 및 제도에 적극적으로 반영하여 실질적으로 활용하고 있다(Fig. 6). 그러나 국내 물질호흡분석은 이론적인 기반과 방법론에 대한 검토가 체계되지 않은 채, 단순히 분석기법만을 응용하고 있어 결과의 정확성 및 실현성이 낮은 편이다. 이에 관련 연구의 성과물 축적이 초반단계이며, 유럽 연합이나 일본의 선진연구에 대한 연구결과의 정리가 부족하다. 또한 국내의 연구자들의 정보공유를 위한 네트워크가 구축되지 못하여 연구결과가 효율적으로 확산되지 못하고 있고 국내 물질호흡에 대한 통계자료의 구축이 불완전하여 물질호흡분석의 확대 및 적용에 한계가 있다. 좀 더 나은 국내 자원관리를 위해서는 관광공제자료 구축이 시급한 현안이다.

지속가능한 자원관리를 위한 물질호흡분석 연구 방향은 다음과 같이 제시하고자 한다. 물질호흡분석의 핵심은 선순히 통계구체에 있는 것이 아니라 그 통계자료의 활용성에 있다. 따라서 분석과정의 특성에 따라 그리고 분석의 목적에 따라 분석방법 및 범주가 달라져야 한다. 그리고 모든 물질에 대해서 물질호흡분석을 시행하여 인프라 데이터를 구축하면 좋겠지만 한정된 시간과 비용의 제약으로 인해 물질호흡분석의 대상에 대한 우선순위를 결정하여야 할 것이다. 물질별 분석이나, 화학제품 분석이나, 산업별 분석이나, 지역별 분석이나 그리고 더 세부적으로도 철을 먼저 분석할 것인지 구리를 먼저 분석할 것인지 구리를 고려하여 우선순위를 결정하여야 할 것이다. 그리고 단순히 물질에 대한 호흡을 추적하는 것
5. 결론 및 정책대안

유럽연합은 우리나라 전체 무역전량의 15%를 차지하고 있으므로, 유럽연합의 요구하는 무역재화의 환경규제를 맞추기 위해서는 산업구조나 제조과정의 개선 등 막대한 비용 및 시간이 소요될 것이다. 유럽연합에서 제시하는 환경규제의 범위 및 영역이 광범위하여 이에 해당되지 않은 제품이 없을 정도로 국내 산업에 미치는 파급효과는 막대하다. 지금 단계에서 국내 기업은 이에 대응할 수 있는 구조를 가지고 있으나, 중소기업은 아직 이에 대한 적극적인 대비가 부족하다고 할 수 있다. 따라서 중소기업을 지원하기 위한 정책의 마련도 필요하다고 본다.

중국, 인도 등의 BRICS국가를 중심으로, 고도 경제 성장에 따른 자원 수급 증가로 인해 세계적 지급 자원 전쟁이 벌어지며 자원의 해외조달이 높은 우리나라의 이 같은 변화에 매우 취약한 원자재 대외급수에 대한 경제규제를 반영하였다. 따라서 유럽연합의 환경규제에 강력한 자원관리 무역재화에 시장대비전략 마련이 시급하며 효율적인 국내 자원관리 고도화 및 시스템 보완을 위해
성과 별도로 이뤄져야 한다.

금속자원 3R에서는 금속재활용 확보를 위해서는 불순물 제거기술, 분리회수기술, 대체기술, 원소함유소재 리사이클 기술, 정책개발 등이 중요하다. 3R 기술의 연구개발은 회유자원 대체기술에 의해 자원의 유효이용과 폐기물의 식감을 실현하는 것으로서 자원순환형 생산, 소비 시스템의 설계, 평가 및 지원기술, 유용성과 유해성으로 본 순환자원의 관리기술, 리사이클링 및 폐기물 적정처리 체계기술이 있다. 불순물 제거기술은 철강, 알루미늄, 초미세입강 등에서 리사이클링 등을 위해 필요한 기술이며, 분리회수기술은 동, 아연, 납, 카드뮴 등의 희수 및 촉매 등에서의 백금속 희수, 또는 폐차량제거(ASR: Automotive Shredder Residue)등으로부터 희생금속의 희수, 디스플레이 등으로부터 인듐주석산화물(TO)분리, 폐축재에서 바나듐(V)등 화합물에 필요한 기술이다. 대체기술은 연료전지 등의 전기절약 및 촉매로 사용되는 백금류 금속의 대체기술, 인듐 주석산화물(TO)등에 사용되는 인듐(In)대체기술, 강관에 사용되는 은(Ag)대체기술 개발이 있다. 원소함유소재 리사이클 기술에는 자동차 부품에 포함된 철강재 희수순환의 제이송기술, 유연재활용 등에 사용되는 마그네슘(Mg)리사이클 기술, 건축 폐기물 중 유리섬유강화 플라스틱(ER)에 포함된 봉오리 리사이클 기술이 해당한다. 정책개발은 금속광물 및 물질 데이터 구축으로서 향후 수요가 전망되는 희토류 등의 뉴데트 뒤의 수입 등이 된다.

국내의 환경규제의 중요성 및 시급성을 고려하여 철이나 구리 등의 주요금속과 화유금속을 중심으로 한 금속 물질환수 구축 및 국내 자원가능성 평가가 필요하다. 이러한 지속가능한 평가는 자원생산성과 물질효용성을 도출해 분석할 것이다.

그리고 지속가능한 자원관리 모형은 환경적 요인뿐만 아니라 경제적 요인도 함께 분석하여야 모형의 현실성 부가하여야 한다. 따라서 지속가능한 자원관리 모형은 물질환수분석과 환경영향분석과 더불어서 재활용에 따른 비용효익 분석, 재활용 업체별 수익구조 분석과 민간도 분석을 통해 재생자원의 가격, 재활용 비용, 재활용시스템(관리비, 회수비용) 등 각 변형요인들이 자원순환의 경제성에 미치는 정도를 분석하여 효과적인 자원순환 핵심요소를 파악하여야 한다. 그리고 물질환수분석과 경제성 분석을 바탕으로 자원순환의 장애가 되는 요소를 파악하여 이를 해결할 수 있는 관리 모형을 설정하고 이에 따라 물질환수동향화의 환경영향분석, 경제성분석 등을 분석하여 효율적이고 효과적인 환경의 방안을 도출해야 한다.
사 사

이 논문은 정부(과학기술부)의 재원으로 한국과학재단의 지원을 받아 수행된 연구임(No. R01-2005-000-10894-0).

참고문헌

2008년 1월 21일 원고접수, 2008년 3월 18일 학회수신.