Efficiency of catalyst-coated ceramic filter with acid treatment

촉매담지 세라믹 필터의 표면 산처리 효과

  • Cho, Eul-Hoon (Dept. of Materials Science & Engineering, Korea Univ.) ;
  • Suh, Kwang-Suck (Dept. of Materials Science & Engineering, Korea Univ.) ;
  • Kim, Su-Hyo (Material Analysis Team, Korea Testing Laboratory) ;
  • Shin, Min-Chul (Material Analysis Team, Korea Testing Laboratory) ;
  • Shin, Byeong-Kil (School of Materials Science and Engineering, Pusan National Univ.) ;
  • Kim, Jin-Seong (School of Materials Science and Engineering, Pusan National Univ.) ;
  • Lee, Hee-Soo (School of Materials Science and Engineering, Pusan National Univ.)
  • 조을훈 (고려대학교 재료공학과) ;
  • 서광석 (고려대학교 재료공학과) ;
  • 김수효 (한국산업기술시험원 재료평가팀) ;
  • 신민철 (한국산업기술시험원 재료평가팀) ;
  • 신병길 (부산대학교 재료공학부) ;
  • 김진성 (부산대학교 재료공학부) ;
  • 이희수 (부산대학교 재료공학부)
  • Published : 2008.04.30

Abstract

Ceramic filter was prepared using cordierite powder and it was coated with $V_2O_5$ catalyst by vacuum impregnation method. The filter had the apparent porosity of 58 %, the compressive strength of 10 MPa and the pressure drop of 1200 Pa at the face velocity of 5 cm/see and 400$^{\circ}C$. $NO_x$ removal efficiency of only $V_2O_5$ coated on cordierite filter showed the removal efficiency of 80 %, and it was improved up to 90 % by increasing specific surface area of filter elements from the acid treatment. The high surface area is due to the removal of Mg and Al ions from the silicate structure and subsequent generation of free amorphous silicate on the surface of the cordierite.

코디어라이트를 원료로 하여 다공성 세라믹 필터를 제조하였고, 진공함침법으로 $V_2O_5$ 촉매를 코팅하였다. 제조된 세라믹 필터의 기공률은 58%, 압축강도는 10 MPa, 400$^{\circ}C$, 5 cm/sec의 유속에서 압력손실은 1,200 Pa이었다. $V_2O_5$ 촉매의 경우 $NO_x$에 대해 80% 이상의 처리효율을 나타내었고, 산처리에 의한 필터의 비표면적 증가를 통해 처리효율을 약 10%개선할 수 있었다. 이는 필터의 비표면적 증가를 통해 코팅된 촉매의 분산성을 향상시킴으로써 촉매의 활성점이 증대되었기 때문으로 판단된다.

Keywords

References

  1. G. Saracco, "Coupling catalysts and high-temperature resistant filters", High Temperature Gas Cleaning 2 (1999) 627
  2. Y. Sawada, K. Hiramatsu and H. kawamoto, "Evaluation on fundamental properties of filter materials a high temperature", High Temperature Gas Cleaning 2 (1999) 393
  3. M.A. Alvin, "Advanced ceramic materials for use in high-temperature particulate removal systems", Ind. Eng. Chem. Res. 35 (1996) 3384 https://doi.org/10.1021/ie960128i
  4. M.A. Alvin, et al., "Assessment of porous ceramic materials for hot gas filtration applications", Am. Ceram. Soc. Bull. 70 (1991) 1491
  5. S. Berbner, et al., "Characterization of the filtration and regeneration behaviour of rigid ceramic barrier filters at high temperatures", Powder Tech. 86 (1996) 103 https://doi.org/10.1016/0032-5910(95)03043-3
  6. I.E. Wachs, G. Deo and B.M. Weckhuysen, "Selective catalytic reduction of NO with NH3 over supported vanadia catalysts", J. of Catalysis 161 (1996) 221
  7. V.I. Parvulescu, P. Grange and B. Delmon, "Catalytic removal of NO", Catalysis Today 46 (1998) 233 https://doi.org/10.1016/S0920-5861(98)00399-X
  8. J.D. Chung, "Experimental results of high temperature bench scaled dust removal system using ceramic candle filter", Environ. Eng. Res. 2 (1997) 33
  9. S. Ito et al., "Changes in pressure loss and face velocity of ceramic candle filters caused by reverse cleaning in hot coal gas filtration", Powder Tech. 100 (1998) 32 https://doi.org/10.1016/S0032-5910(98)00049-7
  10. A.M. Shingapov and G.W. Graham and R. W. McCabe, "Preparation of high surface-area cordierite monolith by acid treatment", Appl. Cat. A. 182 (1999) 137 https://doi.org/10.1016/S0926-860X(99)00003-4
  11. N. Economidis, R.F. Coil and P.G. Smirniots, "Catalytic performance of $Al_2O_3/SiO_2/TiO_2$ loaded with $V_2O_5$ for the selective catalytic reduction of $NO_x$ with ammonia", Cat. Today 40 (1998) 27 https://doi.org/10.1016/S0920-5861(97)00116-8