A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC

염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구

  • 김희제 (부산대학 전자전기공학과) ;
  • 김용철 (부산대학 전자전기공학과) ;
  • 최진영 (부산대학 전자전기공학과) ;
  • 김호성 (부산대학 전자전기공학과) ;
  • 이동길 (부산대학 전자전기공학과) ;
  • 홍지태 (부산대학 전자전기공학과)
  • Published : 2008.05.01

Abstract

A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

Keywords

References

  1. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc. 80 (1997) 3157-3171
  2. P. Laurence. Journal of Electroanalytical Chemistry 559 (2007) 233-240
  3. Man Gu Kang et al. Solar Energy Materials and Solar Cells, vol. 90, Issue 5, (2006) 574-581
  4. Nam Kyu Park. Chemical world, 07 (2006) 74-83
  5. Mi Yeon Song et al. Syntheic Metal 155 (2005) 635-638
  6. G. K. Kiema, M. J. Colgan and M. J. Brett. Solar Energy Materials and Solar Cells, Volume 85, Issue 3, 31 (2005) 321-331
  7. Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, Tetsya Kida and Eiichi Abe. Journal of Electroanalytical Chemistry, Volume 570, Issue 2, 1 (2004) 257-263 https://doi.org/10.1016/j.jelechem.2004.04.004
  8. J. N. Hart, R. Cervini, Y. -B. Cheng, G. P. Simon and L. Spiccia. Solar Energy Materials and Solar Cells, Volume 84, Issues 1-4, (2004) 135-143 https://doi.org/10.1016/j.solmat.2004.02.041
  9. W. Guiqiang, L. Ruifeng. Electrochemica Acta 50 (2005) 5546-5552
  10. D. Gutierrez-Tauste et al, Journal of Photochemistry and Photobiology A: Chemistry, Volume 175(2005) 165-171 https://doi.org/10.1016/j.jphotochem.2005.04.031
  11. D.H. Kim, H.W. Ryu, Journal of Power Sources 163 (2006) 196-200 https://doi.org/10.1016/j.jpowsour.2005.12.060
  12. A. Hagfeldt, G. Boschloo, H. Lindstrom, E.Figgemeier, A. Holmberg,V. Aranyos, E. Magnusson, L. Malmqvist, Coord. Chem. Rev. 248 (2004) 1501-1509