DOI QR코드

DOI QR Code

Comparison of Head-related Transfer Function Models Based on Principal Components Analysis

주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교


Abstract

This study deals with modeling of head-related transfer functions(HRTFs) using principal components analysis(PCA) in the time and frequency domains. Four PCA models based on head-related impulse responses(HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.

이 연구는 중앙면 상에서 주성분 분석법을 이용하여 시간 및 주파수 영역에서 머리전달함수의 모형화 기법들을 다룬다. 시간영역의 머리전달함수, 복소수 값의 머리전달함수, 확장된 머리전달함수, 로그 크기의 머리전달함수에 기반하여 각각 주성분 분석법을 수행하여 얻은 네 가지 머리전달함수 모형들에 대해서 최소자승오차 관점에서 모형화 성능을 비교하고, 모형들간의 이론적인 관계를 살펴보는 것이 이 연구의 목적이다. 모형화에 사용되는 기저함수의 수가 동일하다면, 시간영역에서의 머리전달함수 혹은 확장된 머리전달함수에 기반한 모형이 복소수 값의 머리전달함수에 기반한 모형보다 최소자승오차 관점에서 더 효율적인 모형화 성능을 지닌다. 시간영역에서의 머리전달함수에 기반한 모형과 확장된 머리전달함수에 기반한 모형은 이론적으로 동일한 모형이며 서로 푸리에 변환 관계가 있다. 로그 크기의 머리전달함수에 기반한 모형은 다른 모형들과 모형화 성능 및 이론적인 관계를 비교할 수가 없는데, 이는 로그 크기의 머리전달함수에 기반한 모형은 머리전달함수의 크기 정보만을 로그 크기로 다루는 반면에 다른 모형들은 선형 크기로 머리전달함수의 크기와 위상정보를 모두 다루기 때문이다.

Keywords

References

  1. Blauert, J., 1983, Spatial Hearing, MIT, Cambridge, MA
  2. Honda, A., Shibata, H., Gyoba, J., Saitou, K., Iwaya, Y. and Suzuki, Y., 2007, 'Transfer Effects on Sound Localization Performances from Playing a Virtual Three-dimensional Auditory Game,' Applied Acoustics, Vol. 68, pp. 885-896 https://doi.org/10.1016/j.apacoust.2006.08.007
  3. Iwaya, Y., 2006, 'Individualization of Headrelated Transfer Functions with Tournament- style Listening Test: Listening with Other's Ears', Acoustical Science and Technology, Vol. 27, pp. 340-343 https://doi.org/10.1250/ast.27.340
  4. Martens, W. L., 1987, 'Principal Components Analysis and Resynthesis of Spectral Cues to Perceived Direction', in Proceedings of International Computer Music Conference, San Francisco, CA, pp. 274-281
  5. Kistler, D. J. and Wightman, F. L., 1992, 'A Model of Head-related Transfer Functions Based on Principal Components Analysis and Minimum-phase Reconstruction', Journal of the Acoustical Society of America, Vol. 91, pp. 1637-1647 https://doi.org/10.1121/1.402444
  6. Middlebrooks, J. C. and Green, D. M., 1992, 'Observations on a Principal Components Analysis of Head-related Transfer Functions', Journal of the Acoustical Society of America, Vol. 92, pp. 597-599 https://doi.org/10.1121/1.404272
  7. Chen, J., van Veen, B. D. and Hecox, K. E., 1995, 'A Spatial Feature Extraction and Regularization Model for the Head-related Transfer Function', Journal of the Acoustical Society of America, Vol. 97, pp. 439-542 https://doi.org/10.1121/1.413110
  8. Wu, Z., Chan, F. H. Y., Lam, F. K. and Chan, J. C. K., 1997, 'A Time Domain Binaural Model Based on Spatial Feature Extraction for the Head-related Transfer Function', Journal of the Acoustical Society of America, Vol. 102, pp. 2211-2218 https://doi.org/10.1121/1.419597
  9. Shin, K. and Park, Y., 2008, 'Enhanced Vertical Perception Through Head-related Impulse Response Customization Based on Pinna Response Tuning in the Median Plane', IEICE Transactions on Fundamentals, Vol. E91-A, pp. 345-356 https://doi.org/10.1093/ietfec/e91-a.1.345
  10. Hwang, S. and Park, Y., 2007, 'Median HRIR Customization via Principal Components Analysis', Transactions of the Korea Society for Noise and Vibration Engineering, Vol. 17, pp. 638-648 https://doi.org/10.5050/KSNVN.2007.17.7.638
  11. Hwang, S. and Park, Y., 2008, 'Interpretations on Principal Components Analysis of Head-related Impulse Responses in the Median Plane', Journal of the Acoustical Society of America, Vol. 123, pp. EL65-71 https://doi.org/10.1121/1.2884094
  12. Algazi, V. R., Duda, R. O., Thompson, D. M. and Avendano, C., 2001, 'The CIPIC HRTF Database', In Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, pp. 99-102
  13. Brown, C. P. and Duda, R. O., 1998, 'A Structural Model for Binaural Sound Synthesis', IEEE Transactions on Speech and Audio Processing, Vol. 6, pp. 476-488 https://doi.org/10.1109/89.709673
  14. Shaw, E. A. G., 1974, 'Transformation of Sound Pressure Level from the Free Field to the Eardrum in the Horizontal Plane', Journal of the Acoustical Society of America, Vol. 56, pp. 1848-1861 https://doi.org/10.1121/1.1903522
  15. Mehrgardt, S. and Mellert, V., 1977, 'Transformation Characteristics of the External Human Ear', Journal of the Acoustical Society of America, Vol. 61, pp. 1567-1576 https://doi.org/10.1121/1.381470
  16. Middlebrooks, J. C., Makous, J. C. and Green, D. M., 1989, 'Directional Sensitivity of Soundpressure Levels in the Human Ear Canal', Journal of the Acoustical Society of America, Vol. 86, pp. 89-108 https://doi.org/10.1121/1.398224
  17. Wightman, F. L. and Kistler, D. J., 1989, 'Headphone Simulation of Free-field Listening. I: Stimulus Synthesis', Journal of the Acoustical Society of America, Vol. 85, pp. 858-867 https://doi.org/10.1121/1.397557
  18. Oppenheim, A. V., Schafer, R. W. and Buck, J. R., 1999, 'Discrete-time Signal Processing', Prentice-Hall, Inc., New Jersey, 2nd edition

Cited by

  1. Building Korean Head-related Transfer Function Database vol.24, pp.4, 2014, https://doi.org/10.5050/KSNVE.2014.24.4.282