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CORE STABILITY OF DOMINATING SET GAMES

LIANG Koxa, Qi1zHI FANG, AND HYE KyUNG KIM

ABSTRACT. In this paper, we study the core stability of the dominating
set game which has arisen from the cost allocation problem related to
domination problem on graphs. Let (¢ be a graph whose neighborhood
matrix is balanced. Applving duality theory of linear programming and
graph theory, we prove that the dominating set game corresponding to G

“has the stable core if and only if every vertex belongs to a maximum 2-
packing in G. We also show that for dominating set games corresponding
to (G, the core is stable if it is large, the game is extendable, or the game
is exact. In fact, the core being large, the game being extendable and the
game being exact are shown to be equivalent.

1. Introduction

It is one of the scopes of cooperative game theory to study how to distribute
the total revenue or cost among the participants in a fair way when they work
in cooperation. Von Neumann and Morgenstern [14] claimed that stable sets
are very useful in the analysis of a lot of bargaining situations. However, it
does not seem to be easy to drive basic properties of the stable set because
some transferable utilities games do not have even the stable set. Deng and
Papadimitriou [3] pointed out that determining the existence of the stable set
for a given cooperative game is not known to be computable, and it is still
unsolved. For this reason, the stable sets for some specific games have been
studied.

While the core and the stable set are different, Shapley [9] has proved that
for convex games, the core is the unique stable set. His result motivated us to
study when the core and the stable set coincide, that is, when the core is stable.
As far as the core stability for concrete cooperative game model is concerned,
only a few results have been obtained. Solymosi and Raghavan {11] studied the
core stability for assignment games, and Bietenhader and Okamoto [1] studied
core stability for minimum coloring games defined on pertect graphs.

The relaxed dominating set games was first studied in Velzen [13] and Kim
and Fang [7]. In this paper we focus the core stability on the relaxed dominating
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set games. Especially, we identify those dominating set games whose cores are
stable. Let G be a graph whose neighborhood matrix is balanced. We prove
that the dominating set game corresponding to GG has the stable core if and only
if every vertex belongs to a maximum 2-packing of the graph. As a corollary, it
follows that checking whether or not the dominating set game corresponding to
GG has the stable core is polynomially solvable. Furthermore, we discuss about
for dominating set games corresponding to G, the core is stable if it is large,
the game is extendable, or the game is exact. In fact, the core being large, the
game being extendable and the game being exact are shown to be equivalent.

2. Definitions and preliminaries

In this section, we introduce the definition of dominating set game and some
known results. We begin with some concepts and notions in cooperative game
theory.

2.1. Cooperative game and core stability

A transferable cost cooperative game I' = (IV,¢) consists of a player set
N = {1,2,...,n} and a characteristic function ¢ : 2% — R. The function ¢
specifies the cost of every coalition § C N. The main problems on cooperative
games are how to distribute the total cost ¢(/N) among all the players in a fair
way. A vector ¢ = (x1,Z2,...,Ts) is called an imputation if ),y z; = c(N)
and Vi € N: z; < ¢({¢}) (individual rationality). We denote Z(I") the set of
imputations of I'. The core of T" is defined as:

C(T)={z e R":z(N) =c(IN) and z(S) < ¢(S5), VS C N},

where 2(S) = ). g ;. The second constraint z(S5) < ¢(S) for a vector be-
longing to C(T") is called coalitional rationality.

The game T' is called balanced if C(I') is not empty and totally balanced
if every subgame (i.e., the game obtained by restricting the player set to a
coalition and the characteristic function to the power set of that coalition) is
balanced.

The concept of stability is introduced by von Neumann and Morgenstern [14].
Let T = (N, ¢) be a cost game, and z,y € Z(I'). We say that = dominates y if
there is a coalition S such that z(S) > ¢(S) and for each i € §, z; < y;. For
convenience, we say that x dominatesy on S. A set 7 C Z(T') is a stable set if
any two imputations in F do not dominate each other and any imputation not
in F is dominated by an imputation in F. Since the imputations in the core
do not dominate each other, the core being stable means that any imputation
not in the core is dominated by a core element. It can be formally stated as
follows: the core of a balanced cost game I is stable if for every y € Z(I')\ C(T),
there exists z € C(I') and a non-empty coalition S C N such that z(S) = ¢(S)
and z; < y; for each 7 € S.
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2.2. Dominating set game

Let G = (V, E) be an undirected graph with vertex set 1" and edge set E.
For any non-empty set V' C V", the subgraph induced by V', denoted by G[V'],
is a subgraph of G whose vertex set is V7' and edge set is the set of edges having
both endpoints in V. The closed neighborhood of a vertex v € V' is denoted by
Nl ={ueV:(u,v) e E}J{v}

A dominating set of a graph G is a set of vertices D C V such that
Npwl(D # 0, Yv € V. Finding a minimum dominating set of a graph G
is an important dominating set problem. The cardinality of a minimum domi-
nating set is called the domination number, denoted by v(G).

Given a graph G = (1, E), the dominating set game (DS game) I'g = (V, ¢)
corresponding to G is defined as:

1. The player set is V" = {1.2,...,n};

2. For each coalition S C V', ¢«(S) = min{y(G[T]): SCT CV}.

Velzen [13] independently introduced the notion of a DS game and called
it a relaxed dominating games. In fact, DS games belongs to the class of
combinatorial optimization games studied in Deng et al. [2]. With the technique
of integer program and duality theory of linear programming, Deng et al. [2] and
Velzen [13] presented a necessary and sufficient condition for the balancedness
of DS games.

Let G = (V, E) be a graph with |V'| = n. The neighborhood matriz of G,
denoted by A(G) = [a,;]. is a n x n-matrix with rows and columns indexed
by the vertices in 17 respectively, where a;; = 1 if vertex i € N[j], and a;; =
0 otherwise. Then the domination number (G) can be formulated as the
following 0-1 program:

P: ~(G) = min{z z; : A(G)x > 1,r € {0,1}"}.
=1
Consider the linear program relaxation (LP) and its dual (DP) of (P):

LP . Inin{z ;i A(G)x > 1,z > 0};
=1

DP : max{z yi 1y A(G) <1,y > 0}.
=1
Theorem 2.1 ([2, 13]). Let ['¢; = (V,c) be the DS game corresponding to a
graph G = (V,E). Then C(T'¢;) # 0 if and only if the linear program relazation
(LP) has an integer optimal solution. In such case, r = (x1,T2,...,Zn) €

C(T'g) if and only if it s an optimal solution to (DP).

As the problem of determining v(G) is N P-hard for general graphs, Theo-
rem 2.1 implies that it is difficult to determine whether or not the DS game
I'g corresponding to G is balanced. However, for some class of graphs, the
domination problem is relatively easy to solve, and we focus on one of such
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graphs classes: A {0,1}-matrix M is called balanced if M has no square sub-
matrix of odd order with exactly two 1’s in each row and in each column. It
was shown by Fulkerson et al. |5] that if M is balanced, then both polyhedra
{x € R" : Mz < 1,z > 0} and {z € R" : Mz > 1,z > 0} are integral. It
follows that if the neighborhood matrix of G is balanced, then both sets of
feasible solutions of (LP) and (DP) are integral. There are several classes of
graphs whose neighborhood matrices are balanced such as trees, interval graphs
and block graphs [4, 8]. That is to say, the DS games defined on this class of
graphs are balanced. Moreover, since every submatrix of a balanced matrix is
balanced, the corresponding DS games are also totally balanced.

Denoted by Gp the class of graphs with balanced neighborhood matrices.
Throughout the next two sections, we restrict our attention to a DS game
corresponding to G in Gp.

3. Dominating set games with stable core

Let G = (V,E) be a graph. A set S C V is called a 2-packing of G if for
every pair of vertices u,v € S, N[u]N N[v] = 0. In other words, S C V is a
2-packing if for every v € V| |[N[v]NS| < 1. For v € V, v belongs to a 2-packing
of G means that there is some 2-packing S of GG such that v € S.

A 2-packing is called mazimal if adding any other vertex to the set makes it
no longer a 2-packing and called mazimum if it has the maximum cardinality
among all the 2-packings. The cardinality of a maximum 2-packing of G is
called the 2-packing number of G, denoted by p3(G). In terms of an integer
program (P3), it can be formulated as follows:

Py: p2(G) =max{) ui:y'A(G) <1,y € {0,1}"},
=1

where A(G) is the neighbofhood matrix of G. Obviously, (DP) is the linear
program relaxation of (P3), and by duality theorem,

p2(G) < opt(DP) = opt(LP) < v(G).

When G € Gp, equalities hold both inequalities above.

Before we discuss the core stability of DS games, we prove the following
lemmas. Here the notion of indicator vector is utilized. Given a subset S C V,
the indicator vector of S is denoted by eg € {0, 1}|V| with a component being
1 if and only if the corresponding vertex belongs to S.

Lemma 3.1. Let I'¢ = (V,c) be the DS game corresponding to a graph G =
(V,E) € Gg. Then C(I'g) is the convex hull of the indicator vectors of the
mazimum 2-packings of G.

Proof. Since the neighborhood matrix A(G) is balanced for G € Gg, the set of
optimal solutions of (DP) is the convex hull of integral optimal solutions, i.e.,
the optimal solutions of (P3) as shown in [5]. This together with Theorem 2.1
and the fact that the optimal solutions of (P,) are the indicator vectors of the
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maximum 2-packings of G imply that C(I'¢) is the convex hull of the indicator
vectors of the maximuin 2-packings. []

Lemma 3.2. Let I'c; = (V,¢) be the DS game corresponding to a graph G =
(V,E) € Gg. If T has the stable core, then for every i € V there exists a core
element x such that x; > 0.

Proof. Assume that there exists a vertex & € V' such that z; = 0 for all
z € C(T'g). Since ¢(V') > 0, there exist [ € V" and £ € C(T'¢) such that &; > 0.
Construct a vector y € R™ based on Z as follows:

z;, ifi ¢ {k 0}
Yi — Ty if1 =k
0 ifi =L

By the assumption on Z(I'¢;), ¥y € Z(I'¢) \ C(I'). Since C(I'g) is stable,
there exist * € C(I'¢) and a non-empty set T' C V such that z* dominates y
on T'. Note that it must be [ ¢ T. In fact, suppose that [ € T. Then z] < y; .
Since y; = 0 by definition of y and 0 < z} by definition of dominating games,
it follows that 0 < z7 < y; = 0, which is a contradiction.

Moreover, it must be k& € T'. To see why, suppose k € T'. Since [ ¢ T'. Since
z€lC(l'g) and y; = z; for all i € T, z* can not dominate y on T either.

Therefore, we have ¢(T) < *(T) = z*(T\ {k}) < y(T\{k}) = 2(T\{k}) <
c(T \ {k}) < ¢(T), which is a contradiction. O

Now we present the main result of this section.

Theorem 3.3. Let G = (1, E) € Gg. The DS game I'¢ = (V, ¢) corresponding
to G has the stable core if and only if every vertex i € V belongs to a mazimum
2-packing of G.

Proof. We first prove the ‘only if’ part. Assume that I'¢ = (V, ¢) has the stable
core. By Lemma 3.2, for every i € 1/, there exists a core element z such that
xz; > 0. In addition, by Lemma 3.1, x is a convex combination of the indicator
vectors of some maximum 2-packings. Hence, for each 7 € V, i belongs to at
least one maximum 2-packing of G.

Conversely, suppose that every vertex ¢ € V belongs to a maximum 2-
packing of G. Given y € Z(I'¢;) \ C(T';). Since y € Z(I'g), according to the
definition of Z(I'¢) we have > " y; = ¢(V'), where ¢(V) is the optimal value
of (DP).

If y is a feasible solution to (DP), then, by Theorem 2.1, y ¢ C(I'g), which
is a contradiction. Thus, y is not a feasible solution to (DP). Hence, there
exists a vertex i¢g € V" such that y(N[ig]) > 1. Let S = NJip}\ { € Nlio] : y; <
0} = {é1,42,...,4}. Since a neighbor of iy belongs to S that § # 0, y(S) > 1,
and y;;, >0 (j =1,2,...,k). By our assumption, each vertex i; belongs to a
maximum 2-packing of GG, namely P; (j = 1,2,...,k). Since S is a subset of
Nlig], it holds that each vertex i; € 5 is contained in the unique 2-packing P;
in the set {P,P,..., P}
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Let
2 =MXep +dep, +---+ Aep, € R",

where A; = 5%7 and ep;is the indicator vector of P; (j = 1,2,...,k). Ob-

viously, A; > 0 and Z?zl A; = 1. For convenience, we denote by ep,(S) =
> ics &> Where ep, = (ej,€j,,...,€;,). By Lemma 3.1, we conclude that
Z € C(Fg), and

= yy(S) ‘= y(S)  y(S
Zi = A= <y, Vi=1,2... .k
P T ys) S Y
It follows that z dominates y on S. Therefore, C(I'g) is stable. O

In the rest of this section, we consider the algorithm for checking whether
or not a DS game has the stable core. The problem is stated as:

Problem A: Checking core stability of DS game

corresponding to a graph G in Gp

Instance: A DS game I'¢ corresponding to a graph G € Gp

Question: Does I'g possess the stable core?

Followed from Theorem 3.3, the above problem is equivalent to checking
whether or not every vertex belongs to a maximum 2-packing of G. For each
i € V, we define a weight function 8* : V — Z7 such that 8°(:) = M and
B*(j) =1 for j € V \ {i}, where M is a sufficiently large integer. Consider the
following integer program:

Py(8Y) :  p2(G,B°) =max{) Biy;:y*A(G) < 1,y € {0,1}"}.
j=1

If there exists a vertex k € V such that po(G,8%) — p2(G) < M — 1, then
it is easy to conclude that k£ is not contained in a maximum 2-packing of G,
meaning that C(I'¢) is not stable; otherwise, C(I'g) is stable.

Since G € Gg, p2(G) and py(G, B*) can be obtained by solving the linear
program relaxations of (P3) and P»(3*) (Vi € V), respectively [5]. Hence, we
have

Theorem 3.4. The problem of checking core stability of DS game correspond-
ing to a graph G € Gp can be solved in polynomial time.
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4. Exactness, extendability and core largeness

Let I' = (N, ¢) be a cost game with |N| = n. The game T is said to have
a large core if for every y € R" satisfving that y(S) < ¢(S) (VS C N), there
exists © € C(I') such that > y. The game I is called extendable if for every
nonempty set S C N and every core element y of the subgame (S, cs), there
exists € C(I') such that x; = y; for all i € §. The game T is called ezact if
for every S C N there exists & € C(T") such that z(S) = ¢(S).

The three concepts are closely related to the core stability. Kikuta and
Shapley [6] showed that if a balanced game has the large core, then it is ex-
tendable. Moreover, if a balanced game is extendable, then it has the stable
core. Sharkey [10] showed that if a totally balanced game has the large core,
then it is exact. We summarize these results in the following theorem.

Theorem 4.1 ([6, 10]). Let I' = (N, ¢) be a totally balanced game. Then

exactness

. 6 > {1t 7
core largeness = extendability = { core Stability.

In the next theorem, we prove that the core being large, the game being
extendable, and the game being exact are shown to be equivalent for DS games

corresponding to a graph G € Gp.

Theorem 4.2. Let G = (V,E) € G and I'; = (1',¢) be the DS game corre-
sponding to G. Then the following conditions are equivalent:
(1) the core C(L'¢;) is large;
(2) the game I is extendable;
(3) the game T' is ezact:
(4) Every 2-packing is contained in a mazimum 2-packing in graph G.

In order to show Theorem 4.2. we need the following lemmas.
For a cost game [' = (/V,¢) with |N| = n, the set of lower vectors is defined
as: -
L(I')={ye R":.y(S) <c(5), VS C N}.

Van Gellekom, et al. [12] showed the following:

Lemma 4.3 ([12]). Let I' = (N, ¢) be a balanced cost game. Then I' = (N, ¢)
has a large core if and only if y(N) > ¢(N) for all extreme points y of L(I').

Now, we characterize the extreme points of L(I'¢;). In order to do that, we

need to give an alternative description of L(I¢).

Let S = |J {T:T C Ni]}, define
icl’

L'Tg)={ye R":y(5) <1, VS e &}

Lemma 4.4. Let G = (V,E) € Gy and U'¢; = (V,¢) be the DS game corre-
sponding to G. Then L(I'¢;) = L'(T'¢;).
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Proof. Since ¢(S) < 1,Vs € S, L(T'g) C L'(Tg). To show L'(T'g) C L(T'g),
take y € L'(I'g). We have to check that y(S) < ¢(S) for every S C V.
Assume that ¢(S) = k. Then we can divide S into k disjoint sets, namely,
S1,52,...,5. Then S; € § (1 = 1,2,...,k). Since y € L'(Tg), y(S;) <1
for each ¢+ = 1,2,...,k. Therefore, y(S) = Zf,___l y(Si) < k = ¢(S5). Thus,
y € L(T'g) and so L'(T'g) C L(Lg). U

Lemma 4.5. Let G = (V,E) € Gg and I' = (V,c¢) be the DS game corre-
sponding to G. Then

(1) the extreme points of L'(T'g) are non-negative;

(2) each extreme point of L'(T'c) is the indicator vector of a mazimal 2-
packing of G.

Proof. (1) We prove by contradiction. Suppose that y is an extreme point of
L'(Tg) with at least one negative.component i. Now, we define two vectors y'
and y? as follows:

1) v if y; >0 o |y if y; >0
yi‘{o if g, <0 200 yi_{Qy,,; if y; < 0.

It is easy to see that y',y*> € L'(I'g). Since y #y',y #y* and y = 31;—3’2, y is

not an extreme point of L'(I'x).
(2) Consider the following polyhedron:

L"(Te) = {y € R™ :y(S) < L,VS € S; y > 0}.

Then L"(I'¢) C L'(T'g). Thus, by (1), each extreme point of L'(T'¢) is also an
extreme point of L"(I'¢). Thus, it is sufficient to show each extreme point of
L"(T'g) is the indicator vector of a maximal 2-packing of G.

By the definition of S and A(G), it is easy to verify that

L"Tg) ={yeR":y(N[E])) <LVieV;y>0}
={y € R" :y*A(G) < 1,y > 0}.

That is, L"(T'¢) is exactly the set of feasible solutions to (DP). Let y* be
an extreme point of L''(I'g). In the theory of linear programming, it is well
known that there exists a non-negative function w : V. — Z7, such that y* is
the unique optimal solution of the following linear program:

LP* : max{z wiy; cyA(G) <1, y > 0}.
3=1

Since A(G) is balanced for G € Gg, (LP*) has an integer optimal solution (see
[5]). Thus, y* is a {0, 1}-vector which is an indicator vector of some 2-packing
P* ot G.

Assume that P* is not a maximal 2-packing. We will reach a contradition.
Then there exists a 2-packing P’ such that P* C P’. It follows that the
indicator vector of P’ is also an optimal solution of (LP*), which contradicts
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to the fact that y* is the unique optimal solution. Therefore, PP* is a maximal
2-packing. O

Proof of Theorem 4.2. By Theorem 4.1, “(1) = (2) = (3)” is true. It remains
to prove “(3) = (4)” and “(4) = (1)".

We show “(3) = (4)”. Suppose that I'¢; is exact. Let S be a 2-packing
of G. By the definition of the exactness, there exists + € C(I'¢;) such that
z(S) = ¢(S) = |S]. We denote P the set of maximum 2-packings of G. By
from Lemma 3.1, z can be expressed as

J = >—JPED APEP,

where ep is the indicator vector of the 2-packing P, Ap > 0 for each P € P,

and > Ap = 1. Then we have
PeP

z(S) =Y Apep(S)= > Ap[PNSI< D> AplS|=]S].

Pep PP PeP

Since z(S) = |5], the equality holds in the above formula, meaning that PNS =
S for any P € P with Ap > 0. That is, S is contained in at least one maximum
2-packing of G.

Finally, we shoe that “(4) = (3)”. Suppose every 2-packing is contained in
a maximum 2-packing in graph . Let y be an extreme point of L(I'g). By
Lemma 4.4 and 4.5, y is the indicator vector of some maximal 2-packing P. By
the hypothesis, P is a maximum 2-packing of G. Therefore, y(V') = |P| = ¢(V).
By Lemma 4.2, [' has the large core. [

There are problems regading algorithins related to the core largeness, exact-
ness and extendability for DS games corresponding to a graph G. The problems
concerned are stated as:

Problem B: Checking extendability, exactness and core

largeness of DS game corresponding to G on Gg

Instance: A DS game 'y defined on a graph G € Gp

Question: Is the game I'¢; extendable, exact and with large core?

Theorem 4.2 tell us that, these problems are all equivalent to determining
whether or not every 2-packing is contained in a maximum 2-packing of G.
These can be restated as follows:
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Problem C: Size equality of maximum 2-packing

and minimum maximal 2-packing in graph G € Gg

Instance: A graph G € Gp

Question: Do a maximum 2-packing and a minimum
maximal 2-packing have the same size?

Suppose that GG is a “YES” instance of Problem C. Then for each maximal
2-packing, its cardinality is not less than that of the maximum 2-packing. It
means that a maximal 2-packing is exactly a maximum 2-packing. On the
other hand, assume that G is a “NO” instance of Problem C. There exists a
maximal 2-packing such that its cardinality is less than that of a maximum 2-
packing, meaning that none of the maximum 2-packings contain this maximal
2-packing.

Although we are not aware of a polynomial-time algorithm for Problem C
for general graphs in Gp, there are some graphs for which Problem C can be
solved in polynomial time. For example, sun-free chordal graphs, included in
Gg, satisfy this property [4, 8] (trees, line graph of trees, interval graphs, and
block graphs are examples of sun-free chordal graphs). For these classes of
graphs, we can conclude the following.

Corollary 4.6. Let G = (V, E) be a graph such that the corresponding Problem
C can be solved in polynomial time. Then the problems of checking extendabil-
ity, exactness and core largeness of the DS game corresponding to G on Gg can
be solved in polynomial time.
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