AHEE A oy AH B8 7Y

B 2006 BAI=D ZHZICHS| A

ARAES A HE A4 del 71H
(Buffer Cache Management for Low Power Consumption)

o @’ Mol T o] &=

| -4

[0

r‘

(Min Lee) (Euiseong Seo) (Joonwon Lee)

2 % HFH o] FAF FuU-8 A2Ho= HIElAA, AHEE] FF F8IAAL A 53
WEY Aladd ZAfo oS 2jgd) o)F vzl AREE HYo] HA HYAwe T Y & 8
27 3 Y, vRE A2doxe] AYLRE Fo]7] H8]A SDRAMY AZHY R=g 88 4 9l
t}. RDRAMS A% Y ¥ E(nap mode)= HEJH R E(active mode)?] 5%0}3}le] AHWE AR} 3t
gt sl=do] HEEHs $IAAZ FR3PA] EoH o] 715 E8&8HCE FRA Rt} o] =74
A SDRAMS HdEIH fYl(active unit)e] 45 HAZ s Yo 23E& 2&Ech 2948 F2HA
g WEYE AXY Ero o224 HArgle FUETE JdEH BEd 2 JHE T2} &
qE 4 U=E HAF(physical) HeIXES #FFt o]HE PAVM(Power Aware Virtual Memory)
A9 dutstd A|&d Hule] Wit Aetn & 4 Ut v Ee YHAE dEEE sk e
o, E3) HuAHoF AA oEale g Algsle By JAE nEstae Ak ¥y AA)e £330 2
84 wid PAVM S W3 AAE 23k ¥ie 4AF #ye] HA R, o] =RelA &
gde izl ASHE ENSn AAHY dHeolx] @3 FYS A¢gith 3] T ML F4FTo) iy
(mapping) @ #Ho|X & WY A7} I E, o] F FF/9 HolX g 4528y O BAE 43
I AAYHE Yl olEg AAE o] &7,

7191= : g =] e}, SDRAM, B3 s A}, PAVM

Abstract As the computing environment moves to the wireless and handheld system, the power
efficiency is getting more important. That is the case especially in the embedded hand-held system
and the power consumed by the memory system takes the second largest portion in overall. To save
energy consumed in the memory system we can utilize low power mode of SDRAM, In the case of
RDRAM, nap mode consumes less than 5% of the power consumed in active or standby mode.
However hardware controller itself can’t use this facility efficiently unless the operating system
cooperates. In this paper we focus on how to minimize the number of active units of SDRAM. The
operating system allocates its physical pages so that only a few units of SDRAM need to be activated
and the unnecessary SDRAM can be put into nap mode. This work can be considered as a generalized
and system-wide version of PAVM (Power-Aware Virtual Memory) research. We take all the
physical memory into account, especially buffer cache, which takes an half of total memory usage on
average. Because of the portion of buffer cache and its importance, PAVM approach cannot be robust
without taking the buffer cache into account. In this paper, we analyze the RAM usage and propose
power—aware page allocation policy. Especially the pages mapped into the process’ address space and
the buffer cache pages are considered. The relationship and interactions of these two kinds of pages
are analyzed and exploited for energy saving.

Key words | Energy Management, SDRAM, Buffer cache, PAVM

293

t A o Jgaerled ANsa Copyright @2008 =4 R348 : 7liQ B olu; wd 24 7%, o] Az
minlee @cc.gatech.edu B2 AA v ANl g3 BAHE 22 oA g AMEe A5E #7kh g
euiseong@cse.psu.edu o] uf, ALE-2 AYH ko B AL 4 glom A HolA o] B Htsl 24

A3Y - ST g9 UG ma & vh=Al mAjgo}) o] 9jo] BRlog Ha) Wiy 29 Af FRE
joon@kaist.ac.kr FEY AN E e 35 dislde AL #1E i v 43 X))ok

£44 ¢ 20069 59 18Y Ll
AbgEE : 2008d 39 109 BEAGH =2 Al2g B o]§ A 35 A62(2008.6)

294 BEAFI=FA A" H o]& A B A 6 Z(A0086)

1. Introduction

The memory system is the second most power-
consuming part next to the processor. Also in the
server system, the memory system is one of the
most power-consuming parts. For an example, the
40% of the energy is consumed by the memory
system in a mid-range IBM eServer machine {1].
As the memory consumes power continuously con-
trary to the other components, reduction in power
consumption of memory system can be beneficial to
the whole system. Since the memory is getting
bigger this power issue gets more important. This
naturally leads us to put our effort in saving the
power consumption in memory system. Hai Huang
and his colleagues did excellent work in this area
[2,3]. However we found it need to be more sys-
tem-wide. We especially apply the same idea on
the buffer cache which takes big portion of the
memory and successfully reduced the power con-
sumption. In this paper we suggest power aware
buffer cache which is more generalized and fine-
grained approach. In this scheme, each memory
region which the buffer belongs to 1s put into
active mode only when -he process which uses 1t
is running. By this we can put as many memory
regions into low-power consuming mode as possi—
ble and limit the size of the memory regions which
is used for the system. By limiting the size of
system region which should be put into the active
mode always and mimmizing the size of memory
regions which the process and buffers which is
used by the process, we minimize the power con-

sumption in memory system.

2. Motivation and Related Work

For low-power computing, the effort to reduce
the energy in the one component like the memory
system [2-4, and 5] and the disk-drives [6] has
been made. Also the cooperation between the oper-—
ating system and applications for the low power
consumption has been s*udied [7,8, and 9]. More
system-wide approaches also have been studied in
[10-13]. ECOSystem in (111 treats the energy as a
first class resource to achieve the target battery

time.

Mode
(Power)

Transition time

Read/Write

Attention

Power Down
Tmw
zo
22510ns

Fig. 1 RDRAM device operating modes

For the low power in memory system, the faci-
lity of lower power operating mode in the SDRAM
is exploited. The smallest unit of power control in
DDR(Double Data Rate} RAM memory is a rank
and it's a device in the RDRAM(Rambus DRAM)
memory. Although the devices in the RDRAM
memory can operate in the several power states as
shown in Fig. 1 [2-4, and 5], we consider only
standby and nap mode and operating in each mode
1s said to be turned on and turned off respectively.
The other power states are not of our concern
because it’s not cost-effective due to its resyn-
chronization cost.

The authors of [5] first studied page allocations
for the low power consumption. The authors of [4]
proposed a simple scheduler-based policy and the
PAVM - Power-aware Virtual Memory [2,3], was
successful in reducing the energy footprint by
gathering the physical pages mapped in the address
space into the active ranks and turning on only
those active ranks. In [2], the PAVM is modified to
cooperate with hardware controller so that more
hints from the operating system can be exploited
by the controller for the low power.

[12,14] are the studies about the buffer cache not
the low power. In [14] the patterns of file /O are
categorized into sequential, looping, and others and
utilize this information when replacing the buffers
so that the better hit ratio is achieved. In [12], they
improved the accuracy of [14] using the PCC (PC-
based Classification) approach.

In [13], the garbage collection of battery-operated
embedded Java system is studied so that the more
memory regions can be turned off for the low

POWET,

AAHE A% vy A4 B 7Y 205

The DDR RAM memory system can be viewed
as an array of rank which is the smallest unit of
power-management. This can be a device for the
RDRAM. For simplicity, we take the rank as the
smallest unit of power-management in this paper.
To reduce power-consumption in the memory
system, each rank should be put in its appropriate
power state so that power can be saved. For this,
the appropriate policy 1s required.

In PAVM, the pages mapped into the process
address space are gathered into one or a few ranks
and only those ranks are turned on during run-
time. We refer these ranks to rank set. Whenever
the context switch occurs, only such rank set for
the process and system rank set is turned on. By
this only needed ranks for the run-time can he
turned on and the unnecessary ranks are turned
off. However PAVM doesn’t consider the memory
reference from the kernel mode and as the memory
the system uses increase, the size of system rank
set increases. In turn it causes more power con-
sumption because the system ranks should be
turned on always. The PAVM i1s for the case of
CPU-bound job rather than I/O-bound job because
it doesn't consider system's memory usage and
buffer cache.

The Fig. 2 shows the increase of system rank
set size when the Linux kernel source is being
compiled. The system rank set is the ranks of
physical pages used for the kernel image and
kernel data structures and etc. This system rank

g NQO MBI
B =7 A" ¥

Num ber of system rani

t 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 398 378
Time (Unit:2sec)

Fig. 2 The increase of system rank set size

set should be turned on always regardless of which
process is running but the idle process. The Fig. 2
is an example of memory system equipped with
totally 8 ranks. The normal is the unmodified
Linux kernel and it always turns on all 8 ranks.
As Fig. 2 shows, the system rank set size increases
as the time goes. This is caused mainly by the
existence of buffer cache which is not mapped into
the process’ address space but actually is used by
the process. As the buffer cache grows, eventually
it invalidates the energy saving of PAVM. We
should take the buffer cache into account to resolve
this issue and the PABC which considers the
buffer cache successfully limits the size of system
rank set size as shown in the Fig. 2.

The process of heavy disk I/O especially incre-
ases the buffer cache distinctively. The diff process
increases the portion of buffer cache from the 47%
of boot up time up to the 77% as shown in Fig. 3.
In this case, PAVM can’t help putting the buffers
into the system rank set and increases the size of
system rank set. In turn this causes more power
consumption.

Even under user's average workload, roughly the
half of the memory is used for the buffer cache.
These two simple experiments show that the buffer
caches take roughly the half of the memory res-
pectively on Windows machine and Linux machine
under user's average workload.

Therefore we can squeeze out more power
consumption through the buffer cache. By manag-
ing buffer cache out of the system rank set, the
size of system rank set can be limited and more

reduction in power consumption can be achieved.

800

500 -~ Cached
~a— MemUsad
400

@ 300
/ 77%
200 W
100
47% 4

0 FYT TN YR TR TR WOURE FRUUT SH SV S W YU SV SH T ¥ .
L 4

13 & 7 8 11 18 165 17 19 21 23 26 27 29 31
Time

Fig. 3 the portion of buffer cache

296 AEAGI =R A2 FH o] A B A Al 6 5(20086)

Table 1 Memory usage in the Windows machine (unit: KB)

Right after boot-up, 169MB used as system cache

Total 522988, System Cache 169664

After a little bit of use, 174MB used as system cache

Total 522988, System Cache 174752

During copy big files, 379MB used as system cache

Total 522988, System Cache 379688

After the copy, still the system cache lingers

Total 522988, System Cache 381116

Table 2 Memory usage in the Linux machine (unit: MB)

Workload Used memory Buffer cache Ratio
Right after boot-up, serveral X-terms 196 34 42%
Additionally run Opera 265 117 44%
Additionally run Openoffice Writer 335 176 52%
Additionally run Openoffice Spreadsheet 346 185 53%
3. Power Aware Buffer Cache Int | ranks_user;

3.1 Overview

The memory system can be viewed as an array
of rank which
management and each rank covers physical address

i1s the smallest unit of power-

of its size sequentially as shown in the Fig. 4.
Therefore a rank consists of thousands of conse-
cutive physical pages.

rakD cgrkl rank2 rark 3 rankd rank5 rark6 rank 7 rankB rank9rak1Gankltark iZrark 1 7ank 14ank 15

|
__ 1 ||

System ranks

Process

Buffers in system ranks

Process & Buffer

Fig. 4 Basic idea

The basic idea is to gather not only the process’
pages which is mapped into address space but also
the pages used for buffer cache for each file the
process uses. Moreover we want these two kinds
of pages to coincide so that only minimal number
of ranks should be turned on. Low power can be
achieved by turning on only needed ranks as
above.

3.2 Basic design

PABC defines a rank set as the below. A rank
set is an basic structure to control the memory
allocation and account the usage of pages.

Struct rankest {

Spinlock_t ranks_lock
Struct ranklist ranks;
Struct rank_account account;

Int ranks_type;

The ‘ranks’ field which is the list of ranks which
the pages spans. In other words, it contains the
ranks which the pages belongs to. The field ‘acc-
ount’ is used to account the pages. This is a list of
same size of the field ‘ranks’ and counts how many
pages each ranks have. The preceding element of
the list of the ‘ranks’ field has the priority over the
following element on the allocation.

Each instance of this structure falls into three
categories by the ‘ranks_type’ field as the below
and these rank sets control the allocation for the
corresponding pages and get involved in freeing the
pages.

a . rank set for a process
B : rank set for the buffers of a file
S ! system rank set

We denote the actual instance of each rank set
as the below.

a(p) : rank set for the process p
B() : rank set for the buffers of the file of inode i
S ! system rank set

a(p) represents the process’ pages which are the
anonymous pages and the page tables of the pro-
cess and consists of the ranks these pages span.
(i) represents the buffers for the file of inode i and
consists of the ranks those pages span. The system
rank set represents the rest of the pages which are

used by the system such as kernel image and data

AAHE A3 vy A4 B 71 297

structures. This system rank set 1s always turmed
on unless the system is idle and there is only one
instance of system rank set unlike the rank sets
for a process or the buffers.

This system rank set is initialized as the first
two ranks of the memory when boot-up initializa-
tion time due to the DMA. Since the DMA refer-
ences the physical pages without CPU’s inter-
vention, such pages should be allocated from the
system rank set and the rank 0 should be included
in the system rank set because the ISA-DMA uses
lower 16MB of the physical memory. Therefore
virtually the second rank, rank 1, is the system
rank and rank 0 is primarily used for the DMA.
For this reason, actual implementation of PABC has
the first element of the rank set is rank 1 and the
second element of the rank set is rank 0. We may
optimize this system rank set a little bit more here,
however it’s a trivial issue.

For the rank set of type a or B, the initial rank
which is the rank the first page is allocated from
is very important. Because all the pages are actu-
ally allocated from the one rank, once this initial
rank is decided, the page allocation afterwards is
done from this rank so it is hard to make a
change to this rank set.

These rank sets can be expanded when the page
is inevitably allocated from the other rank than
those in the rank set. However this increase the
number of ranks which should be turmed on during
run-time, this should be allowed by the proper
policy prudently. On the contrary, the rank set can
shrink when all the pages in the rank are freed.
The first and second rank of the system rank set
is exceptional as the above.

The decision of which rank should be chosen for
the initial rank or expansion of rank set is one of
the major policy. Basically we may use worst fit
policy that we always choose the emptiest rank.

The Fig. 5 shows how the rank sets are related
with the other kenel data structures. Since the a(p)
manages the physical pages, it's associated with
the address space rather than the process. Unlike
the B(i1) is associated with the one inode object so
there’'s one to one correspondence relationship,
several address spaces which share the pages share

Address
space
P1}—Ca) P1 P1 ——-@
2 lcow)
fork() [po > @, exoc() Pz—@
e E® e
) 512)

Inode cbiect

File 1}

o(24), H40

File 2/
File 3

Fig. 5 The relationship of the rank sets

a due to COW{copy on write) because although the
new process is forked, physical pages are shared
by COW. In other words,
which share at least one physical page by the
COW share the rank set. Therefore a is inherited
across the fork system call and new a is allocated

any address spaces

only by the creation of new address space through
the exec system call. The field ‘ranks_user’ has an
meaning when it's an @, this field count the num-
ber of address spaces which use the rank set and
the rank set is freed only when the field equals
zero. The B is allocated when the first buffer is
allocated for the file and is freed when all the
buffers are freed. The S is allocated at the system
boot up, and freed at the shutdown of the system.

The Fig. 6 shows the actual memory usage
through the rank sets. After the P1 forked PZ, the
memory for P2 is allocated against the «al.
Afterwards, P2 discards its address space by exec()
system call and some pages of al are freed. As the
new address space which doesn’t share any phy-
sical page with any other address space 1s created,
new rank set, a2, is allocated and afterwards the
memory for PZ is allocated against the a2.

The kernel maintains the three types of rank sets
- a, B, and S and the pointer to the appropriate
rank set i1s passed to the kernel memory allocator
as an parameter for the every page allocation. The
kernel memory allocator tries to allocate the page
from the designated ranks by the rank set. If the
ranks are full and fails to allocate, allocate from
the another rank which is not in the rank set and
expand the rank set to include the rank which the
page is allocated from. If the allocator succeeds in

298 AH A8 S =F A

Rank0 | Ranktl | Rank2| Rank3]| Rankd4}| Rankb| Rank6

Rank0 | Rankl | Rank2| Rank3| Rank4| Rankb| Rankt

Rank0 | Rankt| Rank2| Rank3| Rank4! Rankb| Rank6

Fig. 6 Actual memory usage through the rank sets

allocation, it leaves the pointer to the rank set In
the allocated page’s page descriptor for the sake of
accounting. This information is used to decrease
the count value of the rank set which the page is
allocated from. By this, physical pages for the
process and buffers for each file are gathered at
the allocation time. Also the accounting for each
rank set 1s possible at the low cost.

Based on this information the kermel turmns on the
active set defined as the below and turns off all
the other ranks at the every context switch to
process p. Our goal is to minimize the size of this

active set.

Active set size = | S U a(p) U ZB3)|

The summation 2 means the union set of all the
rank sets for the opened files of the process p.
This active set denotes the ranks of potential
memory reference, so we turn on only these ranks
during run time. Besides this, the non-anonymous
pages which are mapped into the address space are
discussed in the PAVM ({2, 3] excellently. For the
simplicity of discuss, in this paper we focus on the
buffer cache.

Al=¥ & o]& A 35 A A 6 F(0086)

3.3 Compaction

Ideally if the size of the rank set is 1, we say
the rank set is compact. As the memory runs out,
each rank set starts to expand so that the size of
the rank set gets larger. We define the diffusion as
the below to analyze this.

Diffusion = Rank set size - 1

Let the total diffusion to be the sum of the dif-
fusions for ali the rank sets. If this total diffusion
1S zero, it means that all the sizes of the rank sets
are 1, that is, perfect compaction is achieved. On
the other hand, as this total diffusion increase, we
have to turn on many ranks during run time. The
Fig. 7 shows the increase of the total diffusion
value as the memory runs out. To achieve the
compaction, we defer the expansion of the rank set
and reclaim the pages from the rank set first. We
can achieve a good compaction by this strategy.
We define two policies for this strategy by its
timing of page reclaiming.

Pages /\ —
50000 :
Ototal putt / :
0000 stotal anen :
wiotd sys / :
30000

1 5 9 13 17 20 25 29 33 37 &1 45 43:53 57 61 65 63 1 77 6 65 89 83 97 W
‘llnml:lit:zuc}

8 & 8 8

o

1 5 9 13 17 21 26 29 33 37 41 45 43 53 57 61 65 6% 13 17 B 05 89 93 $7 10

Time {Unik:25ec)

Diff_anon : total diffusion for a rank sets

Diff_buff : total diffusion for B rank sets

Total_anon : memory used for a (process’ memory)

Total_buff : memory used for B (buffer cache)

Total_sys
Fig. 7 the increase of total diffusion as the memory

: memory used for S (system memory)

runs out

PABC . The expansion of the rank set is allowed
always

AdEE A% Wy AA B 7Y 299

PABC-mempoll
rank set right before the call to com killer(out-of-

Allow the expansion of the

memory killer)
PABC-mempol?2
rank set right before the invocation of disk /O

Allow the expansion of the

PABC-mempoll and PABC-mempoiZ reclaims the
pages from the rank set bhefore the expansion as
the above. In either case of two policies, a good
compaction 1s achieved.

3.4 Coincidence of the process and buffers

To minimize the active set size, we need to
coincide a(p) ,the rank set of the process, and %8B
(i), the buffers this process uses. For this purpose
we set the initial rank of the B to be the first
element of the rank set of the process which
caused the allocation for the first buffer, We
coincide a{p) and 2B() by this strategy and this

minimize the active set size.

4. Evaluation

4.1 Experimental setup and metric

All the experiments in this paper are done on the
machine equipped with 256MB DDR SDRAM (Sam-
sung M3 68L3223ETM-CCC), Pentium 4 2.8GHz
CPU. A rank is defined as a chunk of memory of
32MB so this machine has totally 8 ranks and has
up to 8192 pages in one rank except the first and
last rank because of memory holes. We imple-
mented PABC on the Linux 2.6.10 in Fedora Core
3. As the metric for the measurement we define
the rtime, the rank time, as the follow.

Rtime @ the energy consumed of the one acti-

vated rank for one tick

In Linux 2.6 on 1386, one tick is 1/1000th second.
This rtime is an energy unit by the definition and
is measured as the below because each process
used the activated ranks of the size of its active

set for the ticks the process spent.

Rtime += the ticks the process spent * size of

active set

4.2 Energy saving

— i Mormel

1500000 2000000

Rime (Energy)
1000000

500000

- ARl e oA Attt A A b b B RS A
1T 7 13 18 25 91 37 43 49 95 61 87 13 Y49 BS 491
Time (Unit:Zxec)

(a)

18000

16000
14000

h g
+

y.

12000

10000

8000
6000 |

Rtim e {(Energ

4000

2000

O [IRAIE ISt ERIPR IR NI I SRR ISR TN AT PN AR TP A IR R RIR R P AT A RN SAR IS ERT AR IR IR R ENED NI YNNI NIRRT
1 7 13 19 25 31 37 43 49 55 61 67 73 78 86 91
Time (Unit:2sec)

(b)
Fig. 8 Energy consumption of the diff process (a)

Total energy (b) power

The Fig. 8 shows energy and power consumed
by the single diff process on the two Linux kernel
source trees. The most power consuming is the
normal case which 1s an unmodified kernel and the
PAVM saves the power for a minute after the boot
up but soon it follows the normal case while the
PABC continues the energy savings. The Fig. 8
describes the behavior of PABC well in the case of
single disk I/O bound job.

In the Fig. 9 and Fig. 10 the practical workload

3000000

~p— Normal

—a— PAVM
2800000 b—{ -~ PABC

e PABC-mempoit
i PABC-meampoi2

2000000

1500000

Jotal REme

1000000

500000

o S

1 48 95 142 189 236 283 330 377 424 471 518 665
Time{Unit:2sec)

Fig. 9 Energy consumption under the user’s average

workload

300 AR AT E=EA L A 2H

is used. This workload i1s automated by the expect
script program to mimic the user’'s average work-
load. The script surf the several internet web sites
with firebox 1.0 and at the same time uses gcalc,

2 ol Al 3B A A 6 E(20086)

gedit, gimp for an image manipulation, evolution as
an email client, and gpdf for pdf viewer. This also
uses open office’'s oowriter, oomath, ooimpress, ood-
raw and oocalc. Each task is invoked at the inter-

1 350000 ——
0.9 —— > licks size=2
—e— diffusion anon 300000 H -—=ticks size=3
0.8 |~—s- diffusion butf - ticks size=4
5 0.7 250000 H .x-ticks size=5
2 0.6 |~ ticks size=6
8 os X 200000 1} + ticks size>=7
= =
Normal & 04 150000
0.3 100000
0.2
0.1 50000
O mmm— 0
155 109163 217271 325 378 433 487 541 1 54 107 160 213 266 319 372 425 478 531 584
Time (Unit:2sec) Time {Unit:2sec)
70 250000
60 —— ticks size=2
200000 -~ ficks size=3
5 50 —ficks size=d
= —— Hicks size=H
El g 150000 M, ficks size=s
PAVM = 30 E 00000 - ticks sized=7
20
10 —e— diffusion anon 50000
0 &"'— diffusion buff i ———
1 64 127 190 253 316 379 442 505 568 0
Time (Unit: 2sec) {53 105 157 208 261 313 365 417 469 521 573 625
o i 180000
400 g L= itusion butt 160000 f —* fcks size=2
350 -~ ficks size=3
140000 H -+ ticks size=4
300 120000 |f - Soks size=5
5 ~=—ticks size=
g 20 % 100000 | - ficks size>=7
§ 200 = 80000
PABC S 150 !} Erp 60000
100 40000
S e B
Q

1 B0 119 178 237 296 355 414 473 532 T4 91 136181226271 316 351 406 451 435 041

Time (Unit:2sec)

Time {Unit:2sec)

8 200000 f —— ticks size=2 —_ —
7 H—— diffusion anon 180000 -n-t]:cks sEze=3
. -+— ticks size=4
g |l==—diffusion buff 180000 H __ ks sizess
— 140000 H —u-ticks size=6
2 ° @ 120000 [} -tiks sze>~7
;—? 4 |-9- 100000
PABC-mempoll Q 3 gggg
2 40000
T 20000
0 0 e
88 175 262 349 436 523 810 6897 784 87 1 80 153238 317 386 475 554 633 712 791 87C
Time (Unit:2sec) Time (Unit:2sec)
8 — 140000
| —o— diffusion anon ——tficks size=2
; —=— diffusion buff 1t 120000 [-e- ficks size=3
¢ —— licks size=4
=) | —-ticks size=
5 4 ::é 80000 1t 7 ks size>=7
= 80000
PABC-mempol2 a3 [t eee——tl— T e
2 40000
1 20000 (F—at———
0 0 &
1 64 127 180 253 316 379 442 505 568 6531 1 54 107 160 213 266 318 372 425 478 531 584 637

Time (Unit:2sec)

Time (Unit:2sec)

Fig. 10 Details under the user’s average workload

AREE s vy A FE 7Y 301

val of 10 seconds and repeated 4 times so the total
elapsed time is roughly 20 minutes.

Under this practical workload, PAVM and PABC
both suffer from performance degradation. This is
because of the growth of system rank size for a
PAVM and because of the diffusion or expansion
of rank sets for the PABC. The PABC-mempoll
and PABC-mempol2 which we applied the policy to
prevent the diffusion shows impressive drops in
energy consumption.

The Fig. 10 shows the details on this situation.
The figures on the right side shows the ticks spent
for each rank set size. Here we can see that the
number of ticks of rank set size equals or above 7
in PAVM and PABC.
However we see that most of the ticks are spent

overwhelm the others

for the rank set size of 3, 4 or 5 in the case of
PABC-mempoll and PABC-mempol2. This reveals
how the energy savings are earned.

The system rank set is always turned on unless
the system is idle so it is expensive rank set and
we should limit its size. Fortunately as shown in
the Fig. 11 two ranks of size 64MB suffice for the
system rank set for the all the experiments above.
The size of the system rank size is limited
successfully and this makes big contributions to
energy saving.

2.5

b 4

15

—— 5iZ0_SyE

1

05

1 37 73 109 145 181 217 253 289 325 361 397 433 469 505 541

Fig. 11 System rank size

4.3 Compaction

The Fig. 12 shows the perfect compaction of zero
diffusion. Both PABC-mempoll and PABC-mempol2
shows the same result as in the Fig. 12. If we
compare the Fig. 12 with the Fig. 7, we see the
compaction strategy works. Although this is the

simple example, as shown in the figures of left

60000
Pages
500001

(1 pages_total buff
W pages_total anon
40000 @ pages._total sys

30000

20000]
Ve

0
1 6111621263136 41465156616671 768186
Time (Unit:2sec)

10C00

il diffusion buff
M diffusion anon

Diffusiot
OO0
O—=NWOEETD~-1ON —

1 7 13 18 25 31 37 43 49 55 61 67 73 79 85
Time (Unit:2sec)
Fig. 12 Diffusion value with compaction

1
0.9 K
0.8
6.7 M e g el perrre g e g
S 06
Sos e
= 04 _— Hgt rat!o Normal
— Hit ratio PAVM
0.3 - Hit ratio PABC
0.2 - - Hit ratio PABC-mempoll
0.1 ~ Hit ratio PABC-mempol2
0

1 36 71 106141 176 211 246 281 316 351 386 421 456 491 526 561
Time (Unit:2sec)

Fig. 13 Impact on the hit ratio

side of the Fig. 10, this strategy works well under
the practical workload as we see the diffusion
value below 7.

The cost for the compaction 1s the impact on the
hit ratio. We measured the hit ratio as in the Fig.
13 to see the impact on the hit ratio. To avoid the
difficulties of comparison and unfairness of too high
hit ratio due to the read-ahead facility, we mea~
sured the hit ratio without read-ahead facility.
Contrary to the intuitive expectation, the impact on
the hit ratio turns out to be insignificant as shown
in the Fig. 13.

4.4 Overhead

The major runtime overhead is to turn on and
turn off the rank sets at the every context switch.
However as discussed in [2], this latency is over-

lapped with the context switching time so virtually
it 1s not an overhead. Although there are some
other runtime overheads such as accounting, alloca-
tion and freeing of the rank sets, these are all done
in the constant time so they are of little signi-
ficance.

The major spatial overheads are the rank set
structures and the pointer to the rank set in the
page descriptor. However these are in the accept-
able range and takes small amount of memory.

5. Conclusion

We generalized the PAVM’s approach to the
system-wide scale and designed the PABC scheme
especially for the buffer cache. To limit the system
rank set size we take the buffer caches out of the
system rank set and allocate buffers against the
rank set of the process which uses them. Success-—
fully system rank set size is limited. As the mem-
ory runs out the expansions of the rank sets
degraded the performance of PABC and we reme-
died this by modification to the page reclaim policy.
Good compaction was achieved by new page
reclaim policies and as the result under the user’s
average workload, 67% energy reduction than the
normal, unmodified kermel and 61% energy reduc-

tion than the PAVM were achieved.

References

[1] C. Lefurgy, K. Rajamani, F.Rawson, W. Felter, M.
Kistler, and Tom Keller.: Energy management for
commercial servers. In IEEE Computer, pages
39-48, Dec 2003.

[2] Hai Huang, Padmanabhan Pillai, Kang G. Shin.:
Design and Implementation of Power-Aware Vir-
tual Memory.

[3] Hai Huang, Kang G. Shin.: Cooperative Software-
Hardware Power Management for Main Memory.

[4] Delaluz and et al.: Scheduler-based DRAM energy
management. In Design Automation Conference
39, 2002.

[5] Alvin R. Lebeck and et al. Power aware page
allocation. In Architectural Support for Programm-
ing Languages and Operating Systems, pages
105-116, 2000.

[6] Andreas Weissel, Bjorn Beutel, Frank Bellosa.
Cooperative I/O-A Novel I/0O Semantics for Energy-
Aware Applications.

[7] Jason Flinn and M. Satyanarayanan. Energy-aware

302 AEAI=EA AlLF R olE A B A Al 6 2(20086)

adaptation for mobile applications.

[8] Brian D. Noble, Morgan Price, and M. Satyanar-
ayanan. A Programming Interface for Application-
Aware Adaptation in Mobile Computing.

[9] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, James Eric Tilton, Jason Flinn, Kevin
R. Walker. Agile Application-Aware Adaptation
for Mobility.

[10] Carla Schlatter Ellis. The Case for Higher-Level
Power Management.

[11] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, Amin
Vahdat. ECOSystem: Managing Energy as a First
Class Operating System.

[12] Chris Gniady, Ali R. Butt, and Y. Charlie Hu.
Program-Counter~Based Pattern Classification in
Buffer Caching.

[13] G. Chen, M. Kandemir, N. Vijaykrishnan, M.].
Irwin, M.Wolczko. Adaptive Garbage Collection for
Battery—Operated Environments.

[14] JM. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. A Low-QOverhead High-
Performance Unified Buffer Management Scheme
that Exploits Sequential and Looping References.
In Proc. OSDI, October 2000.

[15] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory
controller policies for dram power management. In
International Symposium on Low Power Electro-

nics and Design, 2001.

[16] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling
of dram power control policies using deterministic
and stochastic petri nets. In Workshop on Power-
Aware Computer Systems, 2002.

o] el

ol 20043 FAHaelA AL T
AE w3 20068 = Ev|eLolA
AL g9 E B A= 9= Geor-
gia Institute of Technologyol* ©FA}
9 A6 At} av $GAA, M
A, AFEH 72 2 AF A dig

A YA

XL AIHE7)sUA 20000 &
A} 8+, 2002'd AAF §F9) 18]3 2007
A ukx} g9 E itk dA] W= Penn
State Universityol|A] dA7HLez &%
sl Ao}t = AAY FAFH, =LE
8 A Alxd JH Bl digk AFE F

Y vl AT

AAGL 9§ w4 A VN 303

o] & ¢
o]2g mWaE 19839 A2ulgneA
| 3 SIS R 1990d= 1991 42}
E 1« 21} &h9lo viAl 89E vE Georgia
Institute of Techno]ogy°ﬂ)~‘] ok} 1992
W o)z IR &Ye] AfE A
e 2‘45}-1— et Fa A7 Eoke AR
AT, ‘?Jﬂﬂqt: f“]"‘i‘ll—]r 744 Hjrloj,

