Evaluation of CO2 Emission to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation

고추재배에서 토성별 토양수분, 토양온도, 무기태질소 변화에 따른 CO2 배출량 평가

  • 김건엽 (농촌진흥청 국립농업과학원) ;
  • 송범헌 (충북대학교 식물자원학과) ;
  • 홍석영 (농촌진흥청 국립농업과학원) ;
  • 고병구 (농촌진흥청 국립농업과학원) ;
  • 노기안 (농촌진흥청 국립농업과학원) ;
  • 심교문 (농촌진흥청 국립농업과학원) ;
  • 장용선 (농촌진흥청 국립농업과학원)
  • Received : 2008.10.04
  • Accepted : 2008.11.30
  • Published : 2008.12.30

Abstract

Several researchers have proposed models or equations to predict soil $CO_2$ flux from more readily available biotic and abiotic measurement. Tree commonly used abiotic variables were N mineral and soil temperature and soil water content. This study was conducted to determine $CO_2$ emission to mineral N, soil water content and soil temperature with clay loam and sandy loam in pepper cultivation in 2004~2005. $CO_2$ flux in the upland with different levels of soil water potential was measured at least once in two weeks during the cropping period in the pepper cultivation plots. Soil water potential in the clay loam and sandy loam soils was established at -30kPa and -50kPa by measuring the soil gravimetric water content with two replications. $CO_2$ emission rate from the differently managed plots was highly correlation coefficient to between the mineral N ($R=0.830^{**}$, $0.876^{**}$) and soil temperature ($r^2=0.793^{**}$, $0.804^{**}$) in the clay loam and sandy loam, respectively. However, the relationships between $CO_2$ emission and soil water content were non-significant. $CO_2$ emissions at sandy loam soils was lower to 21~37% than at clay loam soils for both soil water conditions without differences in yield. At difference levels of soil water conditions, $CO_2$ emission at -50kPa decreased to 37.5% in comparison with that at -30kPa. From the path analysis as to contribution factors of GHGs, it appeared that contribution rate was in the order of soil temperature (54.9%), mineral N (32.7%), and soil moisture content (12.4%).

시험포장은 수원시에 위치한 국립농업과학원의 기후변화생태과 시험포장에서 고추를 재배하여 식양토와 사양토의 2개 토성을 대상으로 각 관수시점을 -30kPa와 -50kPa에서 온실가스배출에 관여하는 요인인 토양수분, 토양온도, 토양 중 무기태질소를 측정하여, $CO_2$배출 간의 관계와 배출 특성을 구명하고자 하였다. 본 시험의 연구 결과, 토양의 $CO_2$배출량과 무기태질소 그리고 토양온도에서 높은 상관관계가 있었으나, 토양수분과는 상관을 보이지 않았다. 그리고 $CO_2$ 배출량과 토양수분함량과는 상관관계가 없었다. $CO_2$ 배출량과 토양온도 및 무기태질소의 상관계수는 식양토에서 $0.830^{**}$, $0.876^{**}$, 사양토에서 $0.793^{**}$, $0.804^{**}$로 상관은 고도로 유의하였다. 고추 재배기간 143일간 $CO_2$의 작기종합 배출량을 토양 토성에 따라 수분장력별로 처리하여 비교한 결과, 수분장력이 식양토에서 -30kPa에 비해 -50kPa에서 37.5%, 사양토는 50.0% 저감되었으며, 식양토에 비해 사양토에서 21.2~36.9% (-30kPa~-50kPa) 저감되었다. 고추밭에서 온실가스배출에 관여하는 무기태질소, 토양수분함량, 토양온도 등의 요인들 중 온실가스배출에 어느 정도 영향을 주는가를 정량적으로 분석하기위하여, $CO_2$배출에 대한 기여도를 평가하였다. $CO_2$배출에 대한 각 요인들 간의 기여도는 토양온도 (식양토; 46.6, 사양토; 69.7%), 무기태질소 (39.3, 26.2%), 토양수분함량 (14.1, 4.1%) 순으로 나타나, $CO_2$배출에 관여하는 요인 중 가장 영향을 미치는 요인은 토양온도로 나타났다.

Keywords

References

  1. Akinremi, O. O., S. M. McGinn, and H. D. J. McLean, 1999. Effects of soil temperature and moisture on soil respiration in barley and fallow plots. Can. J. Soil Sci. 79:5-13. https://doi.org/10.4141/S98-023
  2. Andersson, S., S. I. Nilsson, 2001. Influence of pH and temperature on microbial activity, substrate availability and leaching of dissolved organic carbon in a mor humus. Soil Biology and Biochemistry, 33:1181-1191. https://doi.org/10.1016/S0038-0717(01)00022-0
  3. Bouma, Tjeerd J., David R. Bryla, 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil $CO_2$ concentrations. Plant and Soil 227:215-221. https://doi.org/10.1023/A:1026502414977
  4. Buyanovsky G. A., Buyanovsky, G.H. Wagner, C. J. Gantzer, 1986. Soil respiration in a winter wheat ecosystem, Soil Sci. Soc. Am. J. 50:338-344. https://doi.org/10.2136/sssaj1986.03615995005000020017x
  5. Dilustro, J., B. Collins, L. Duncan and C. Crawford. 2005. Moisture and soil texture effects on soil $CO_2$ efflux components in southeastern mixed pine forests. Forest Ecology and Management 204:85-95.
  6. Eom, Ki-Cheol., Kwan-Cheol Song, Kwan-Shig Ryu, 1995. Equations to Estimate the Soil Water Characteristics Curve Using Scaling Factor, J. Korean Soc. Soil Sci. Fert. 28:227-232.
  7. Ginovart, M., Daniel Lopez, Anna Gras. 2005. Individual-based modeling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Analysis: Real applications 6:773-795. https://doi.org/10.1016/j.nonrwa.2004.12.005
  8. Hall, J. M., E. Paterson, K. Killham, 1997. The effect of elevated $CO_2$ concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential. Global Change Biol. 4, 209. https://doi.org/10.1046/j.1365-2486.1998.00124.x
  9. Kleber, M., 1997. Carbon exchange in humid grassland soils, University Hohenheim. 1-264.
  10. Koizumi, H., Markku Kontturi, Shigeru Mariko, Toshie Nakadai, Yukiko Bekku, Timo Mela, 1999. Soil Respiration in Three Soil Types in Agricultural Ecosystems in Finland. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 49:65-74. https://doi.org/10.1080/09064719950135560
  11. Kutsch, Werner L., Ludger Kappen, 1997. Aspects of carbon and nitrogen cycling in soils of the Bornhoved Lake district - II. Modeling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different management. Biogeochemistry. 39:207-224. https://doi.org/10.1023/A:1005859629197
  12. Lohila, A., Mika Aurela, Kristiina Regina & Tuomas Laurila. 2003. Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type. plant and soil 251:303-317. https://doi.org/10.1023/A:1023004205844
  13. Lou, Y., Zhongpei Li and Taolin Zhang. 2003. Carbon Dioxide Flux in a Subtropical Agricultural Soil of China. 149:281-293.
  14. Mansson, KF, U. Falkengren-Grerup, 2003. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests. Forest ecology and management 179:455-467 https://doi.org/10.1016/S0378-1127(02)00535-2
  15. Norstadt, Fred A., Lynn K. Porter, 1984. Soil gases and temperaures: a beef cattle feedlot compared to alfalfa, Soil Sci. Soc, Am. J. 48:783-789. https://doi.org/10.2136/sssaj1984.03615995004800040017x
  16. Parada, C. B., A. Long, S. N. Davis, 1983. Stable-isotope composition of soil carbon dioxide in the Tucson Basin, Arizona, U.S.A. Isotope geoscience. 1:219-236.
  17. Piao, H. C., Y. Y. Wu, Y. T. Hong, Z. Y. Yuan, 2000. Soil-released carbon dioxide from microbial biomass carbon in the cultivated soils of karst areas of southwest China. Biol. Fertil. Soils 31:422- 426. https://doi.org/10.1007/s003749900189
  18. Rochette, P., Raymond L. Desjardins, Elizabeth Pattey, Robert Lessard, 1995. Crop net carbon dioxide exchange rate and radiation use efficiency in soybean. Agron. J. 87:22-28. https://doi.org/10.2134/agronj1995.00021962008700010005x
  19. Reth, S., Markus Reichstein, Eva Falge. 2005. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil $CO_2$ efflux A modified model. 268:21-33. https://doi.org/10.1007/s11104-005-0175-5
  20. Sitaula, Bishal K., Lars R. Bakken, Gunnar Abrahamsen, 1995. NFertilization and soil acidification effects on $N_2O$ and $CO_2$ emission from temperature pine forst soil. soil biol. biochem. 27:1401-1408.
  21. Xu, X., Hua Ouyang, Guangmin Cao, Zhiyong Pei and Caiping Zhou. 2004. Nitrogen Deposition and carbon sequestration in alpine meadows. Biogeochemistry 71:353-369. https://doi.org/10.1007/s10533-004-0371-z
  22. 농촌진흥청, 2006, 작물별 시비처방 기준. 광문당 57-58.