DOI QR코드

DOI QR Code

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A. (Higher Technical Institute, 10th of Ramadan City, Basic Sciences Department) ;
  • El-Tawil, M. (Engineering Mathematics Department, Faculty of Engineering, Cairo University) ;
  • El-Tahan, W. (Engineering Mathematics Department, Faculty of Engineering, Cairo University) ;
  • Mahmoud, A.A. (Engineering Mathematics Department, Faculty of Engineering, Cairo University)
  • Received : 2006.02.03
  • Accepted : 2007.06.12
  • Published : 2008.01.30

Abstract

This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Keywords

References

  1. Choi, C.K. and Noh, H.C. (1996), 'Stochastic finite element analysis of plate structures by weighted integral method', Struct. Eng. Mech., 4(6), 703-715 https://doi.org/10.12989/sem.1996.4.6.703
  2. Choi, C.K. and Noh, H.C. (1996), 'Stochastic finite element analysis with direct integration method', Proc., 4th Int. Conf. on Civil Eng., Manila, Phillippines, 522-531
  3. Choi, C.K. and Noh, H.C. (2000), 'Weighted integral SFEM including higher order terms', J. Eng. Mech. ASCE, 126(8), 859-866 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
  4. Contreras, H. (1980), 'The stochastic finite element method', J. Comput. Struct., 12, 341-348 https://doi.org/10.1016/0045-7949(80)90031-0
  5. El-Tawil, M., El-Tahan, W. and Hussein, A. (2005), 'A proposed technique of SFEM on solving ordinary random differential equation', J. Appl. Math. Comput., 161, 35-47 https://doi.org/10.1016/j.amc.2003.11.034
  6. Elishakoff, I., Impollonia, N. and Ren, Y.J. (1999), 'New exact solutions for randomly loaded beams with stochastic flexibility', Int. J. Solids Struct., 36, 2325-2340 https://doi.org/10.1016/S0020-7683(98)00113-9
  7. Elishakoff, I., Ren, Y.J. and Shinozoka, M. (1996), 'Some critical observations and attendant new results in the finite element method for stochastic problems', Chaos Soliton Fract., 7(4), 597-609 https://doi.org/10.1016/0960-0779(95)00060-7
  8. Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1995), 'Improved finite element method for stochastic problems', Chaos Soliton Fract., 5(5), 833-846 https://doi.org/10.1016/0960-0779(94)00157-L
  9. Ghanem, R. (1999), 'Higher order sensitivity of heat conduction problems to random data using the spectral stochastic finite element method', J. Eng. Mech., ASME, 121, 290-299
  10. Ghanem, R. and Spanos, P. (1991), Stochastic Finite Elements: Spectral Approach, Springer Verlag, N.Y.
  11. Imamura, T., Meesham, W.C. and Siegel, A. (1963), 'Symbolic calculus of the Wiener-Hermite Functionals', J. Math. Phys., 6(5), 695-706 https://doi.org/10.1063/1.1704327
  12. Kleiber, M. and Hien, T.D. (1992), 'The stochastic finite element method: Basic perturbation technique and computer implementation', Wiley & Sons, Chrichester
  13. Lawanwisut, W., Li, C.Q. and Novak, D. (2003), 'Efficient simulation of random fields using orthogonal transformation and lati hypercube samoling', Int. J. Mater. Struct. Reliab., 19-29
  14. Liu, W.K., Belytschiko, T. and Mani, A. (1986), 'Probabilistic finite elements in non-linear structural dynamics', Comput. Method. Appl. M., 57, 61-81
  15. Liu, W.K., Belytschko, T. and Besterfield, G.H. (1989), 'Probabilistic finite element method' In Liu W.K. and Belytschko T., editors, Computational Mechanics of Probabilistic and Reliability Analysis. Elmepress International
  16. Liu, W.K., Belytschko, T. and Mani, A. (1985), 'Probabilistic finite elements for transient analysis in non-linear continua', Advances in aerospace Structural Analysis, Proceedings ASME, WAM, Miami Beach, FL., Edited by O.H. Burnside and C.H. Pharr, AD-09, 9-24
  17. Liu, W.K., Besterfield, G. and Mani, A. (1986), 'Random field finite elements', Int. J. Num. Meth. Eng., 23, 1831-1845 https://doi.org/10.1002/nme.1620231004
  18. Loeve, M. (1977), Probability Theory, 4th edition, Springer-Verlag, New York
  19. Noh, H.C. and Choi, C.K. (2005), 'Added effect of uncertain geometrical parameter on the response variability of Mindlin plate', Struct. Eng. Mech., 20(4), 477-494 https://doi.org/10.12989/sem.2005.20.4.477
  20. Noh, H.C. and Kwak, H.G. (2006), 'Response variability due to randomness in Poisson's ratio for plane-strain and plain-stress states', Int. J. Solids Struct., 43(5), 1093-1116 https://doi.org/10.1016/j.ijsolstr.2005.03.072
  21. Oden, J.T. (1979), Applied Functional Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
  22. Padovan, J. and Guo, Y.H. (1989), 'Analysis of steady response of probabilistic systems', In Liu, W.K. and Belytschko, T., editors, Computational Mechanics of Probabilistic and Reliability Analysis. Elmepress International
  23. Parzen, E. (1962), Stochastic Processes, Holden-Day, San Francisco
  24. Pukl, R., Novak, D. and Bergmeister, K. (2003), 'Reliability assessment of concrete structures', in Bicanic, N. et al., eds., 'Computational Modelling of Concrete Structures', Proceedings of the Euro-C 2003 conference, Swets & Zeitlinger B.V., Lisse, 793-803, The Netherlands
  25. Reddy, J.N. (1985), An Introduction to Finite Element Methods, Mc Graw-Hill, New York
  26. Rosenblatt, M. (1962), Random Processes, Oxeford University Press, New York
  27. Shinozuka, M. and Yamazaki, F. (1988), 'Stochastic finite element analysis: an introduction', In Ariaratnam, S. T., Schueller, G.I. and Elishakoff, I., editors, (1988), Stochastic Structural Dynamics: Progress in Theory and Application. Elsevier Applied Sciences Publ. Ltd.
  28. Spanos, P.D. and Ghanem, R. (1989), 'Stochastic finite element expansion for random media', J. Eng. Mech., ASCE, 115(5), 1035-1053 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
  29. Van Tree, H.L. (1968), Detection, Estimation and Modulation Theory, Part I, Wiley, New York
  30. Vanmarcke, E.H. and Grigoriu, M. (1983), 'Stochastic finite element analysis of simple beams', J. Eng. Mech. ASCE, 109, 1203-1215 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  31. Vouwenvelder, A.C.W.M. (2004), 'Spatial correlation aspects in deterioration models', in Stangenberg et al., eds., ICLODC 2004, Proceedings of the 2nd International Conference Lifetime-Oriented Design Concepts, Ruhr-University Bochum, 31-39, Germany
  32. Yamazaki, F. and Shinozoka, M. (1990), 'Simulation of stochastic fields by statistical preconditioning', J. Eng. Mech., ASCE, 116(2), 268-287 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(268)
  33. Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), 'Neumann expansion for stochastic finite-element analysis', J. Eng. Mech., ASCE, 114(8), 1335-1354 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
  34. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, 4th edition, McGraw-Hill Book Company, New York

Cited by

  1. A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion vol.125, 2013, https://doi.org/10.1016/j.jqsrt.2013.03.018
  2. Solution of the stochastic generalized shallow-water wave equation using RVT technique vol.130, pp.12, 2015, https://doi.org/10.1140/epjp/i2015-15249-3
  3. A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis vol.75, pp.3, 2008, https://doi.org/10.12989/sem.2020.75.3.311
  4. A full probabilistic solution of a stochastic red blood cells model using RVT technique vol.136, pp.4, 2008, https://doi.org/10.1140/epjp/s13360-021-01332-z