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FIXED POINT THEORY FOR PERMISSIBLE MAPS VIA
INDEX THEORY

MirCEA BALAJ, YEOL JE CHO AND DONAL O’REGAN

ABSTRACT. New fixed point theorems for permissible maps between Fréchet
spaces are presented. The proof relies on index theory developed by
Dzedzej and on viewing a Fréchet space as the projective limit of a se-
quence of Banach spaces.

1. Introduction.

This paper presents new fixed point theorems for permissible compact maps
(or more generally permissible maps which are of compact attraction) between
Fréchet spaces. In the literature [1, 6], one usually assumes the map F is
defined on a subset X of a Fréchet space E and its restriction (again called
F) is well defined on X,, (see Section 2). In general of course for Volterra
operators the restriction is always defined on X,, and in most applications it
is in fact defined on X,, and usually even on E,, (see Section 2).

In this paper we make use of the fact that the restriction is well defined on
X, and we only assume it admits an extension (satisfying certain properties)
on X,. It is also worth remarking here that one could write the results in
this paper for compositions of maps with proximally co-connected values using
the index theory in [2] (this has the advantage that no knowlege of homology
theory is needed to construct the index).

Existence in Section 2 will rely on index theory and so we begin by discussing
the maps we will consider in this paper.

Let X and Y be Hausdorff topological spaces. We say F : X — 2Y (here
2Y denotes the family of nonempty subsets of Y) is locally compact if for
every © € X there exists a neighborhood U of x such that the restriction
Fly : U —2Y is compact. Now, if F: X — 2% welet F"(z) = F(F""!(z)).

Definition 1.1. Let F : X — 2% be upper semicontinuous, = € X and
A C X. We say that A attracts = if, for each neighborhood U of A, there
isane{l,2,---} with F*"(z) C U. Also, we say that A is an attractor for
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F if it attracts all points in X. Now, we say that the map F' is of compact
attraction if it has a compact attractor and is locally compact.

Definition 1.2. A multivalued map F : X — 2Y is in the class A,,(X,Y) if
(1) F is continuous,
(2) for each = € X, the set F(z) consists of one or m acyclic components;
here m is a positive integer.

Definition 1.3. A decomposition (Fy,---,F,) of a multivalued map F :
X — 2Y is a sequence of maps

X=X2 X8 %5 X, %X =,
where F; € Ay, (X;-1,X;), F = F,0--- o F;. One can say that the map F
is determined by the decomposition (Fi,---,F,). The number n is said to
be the length of the decomposition (Fi,---,F,). We will denote the class of

decompositions by D(X,Y).

Definition 1.4. An upper semicontinuous map F : X — 2Y is said to be
permissible provided it admits a selector G : X — 2Y which is determined by
a decomposition (G, --,Gy) € D(X,Y). We denote the class of permissible
maps from X into Y by P(X,Y).

Let X be a closed convex subset of a normed space E and let F : X — 2%
be a permissible map which is of compact attraction. Let U be an open subset
of X with Fiz FNOU = . Then the index (X, F,U) is well defined (see |3,
p.42] or see [4, Sections 50-53]) and has the usual properties ([3, p.43]).

Let (X,d) be a metric space and S a nonempty subset of X. For z € X
let d(z,S) = infyes d(z,y). Also, diam S = sup{d(z,y) : =,y € S}. We let
B(z,r) denote the open ball in X centered at x of radius r and by B(S,r)
we denote Uycg B(z, 7). For two nonempty subsets S; and S of X, we define
the generalized Hausdorff distance H to be

H(Sl,SQ) = inf{e >0: Sl - B(SQ,E), SQ - B(Sl,ﬁ)}.

Now, suppose G : S — 2X; here 2X denotes the family of nonempty subsets
of X. Then G is said to be hemicompact if each sequence {z,}nen in S has
a convergent subsequence whenever d(z,,G (z,)) — 0 as n — oo.

Now, let I be a directed set with order < and let {E,}acr be a family of
locally convex spaces. For each o € I, 8 € I for which aa < 3, let 7o 5 : Eg —
E, be a continuous map. Then the set

{a: = (z4) € H Ey: 2o =Tapzg) Vo, €I, a< ﬁ}
acl
is a closed subset of [],.; Eu and is called the projective limit of {Ey}aer and
is denoted by lim. E, (or lim. {E,,m, g} or the generalized intersection [5,
p. 439} ﬁaej Ea)
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2. Fixed point theory in Fréchet spaces

Let E = (E,{|:|n}tnen) be a Fréchet space with the topology generated by
a family of seminorms {|-|, : n € N}; here N = {1,2,---}. We assume that
the family of seminorms satisfies

(2.1) lz]1 < lz|s <|z|3 <--- forevery z € E.

A subset X of E is said to be bounded if, for every n € N, there exists
rn > 0 such that |z|, < r, forall z € X. For r > 0 and = € E, we denote
Bz,r)={ye€e E: |z —y|l, <7, Vn € N}. To E we associate a sequence of
Banach spaces {(Ey,|-|)} described as follows. For every n € N, we consider
the equivalence relation ~,, defined by

(2.2) x~py ifand onnly if |z —y|, =0.

We denote by E" = (E / ~y,,|-|.) the quotient space and by (E,,|-|,) the
completion of E™ with respect to |- |, (the norm on E" induced by |- |,
and its extension to E,, are still denoted by |-|,). This construction defines a
continuous map ., : E — E,. Now since (2.1) is satisfied the seminorm |- |,
induces a seminorm on E,, for every m > n (again, this seminorm is denoted
by |- |n). Also, (2.2) defines an equivalence relation on E,, from which we
obtain a continuous map iy m, : E, — E,, since E,, /~, can be regarded as
a subset of E,. Now, fnm ttmk = tnk if n <m <k and py, = tnm b if
n < m. We now assume the following condition holds:

(2.3) for each n € N, there exists a Banach space (Ey,| - |n)

’ and an isomorphism (between normed spaces) j, : E, — E,.
Remark 2.1. (1) For convenience the norm on E,, is denoted by |- |,.

(2) In our applications E,, = E" for each n € N.

(3) Note that, if z € E,, (or E™), then « € E. However, if z € E,,, then
2 is not necessaily in F and in fact F,, is easier to use in applications (even
though F,, is isomorphic to E,). For example, if £ = C[0,00), then E"
consists of the class of functions in E which coincide on the interval [0, n] and
E, = C[0,n].

Finally, we assume

{ Ei D FEy; D--- and, for each n € N,

(2.4) . 1
|7n Hnnt1 Jni1 zlp <|zfpgy forall o€ By

(here we use the notation from [5], i.e., decreasing in the generalized sense).
Let lim E, (or N{° E, where N{° is the generalized intersection [5]) denote
the projective limit of {E,}neny (note Tpm = jn tnmim : Em — B for
m > n) and note lim. E, = FE, so, for convenience, we write £ =lim. E,.

For each X C E and each n € N, we set X,, = j, pu,(X) and we let
X,, int X, and 0X, denote, respectively, the closure, the interior and the
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boundary of X, with respect to ||, in E,. Also, the pseudo-interior of X
is defined by

pseudo — int (X) = {x € X : jp pn(z) € X, \ 0X,, for every n € N}.
The set X is said to be pseudo-open if X = pseudo — int (X). For r > 0 and
x € E,, we denote B,(x,r)={y€ FE,: |[x —y|l, <r}.

Let M C E and consider the map F : M — 2F. Assume that, for each n €
N and z € M, that j, u, F () is closed. Let n € N and M,, = j, un(M).
Since we only consider Volterra type operators, we assume that
(2.5) it z,y€ FE with |z —y|, =0 then H,(Fz,Fy)=0;

here H,, denotes the appropriate generalized Hausdorff distance (alternatively,
we could assume that if j, p, ¢ = jpuny for all n € N and z, y € M, then
Jnpn Fx = jnpnFy and of course, here we do not need to assume that
Jn tin F (x) is closed for each n € N and x € M). Now, (2.5) guarantees that
we can define (a well defined) F,, on M, as follows:

For y € M, there exists a x € M with y = j, un(z) and we let
Foy=jgnpnFx
(we could of course call it F'y since it is clear in the situation we use it); note
that F,, : M,, — C(E,) and note if there exists z € M with y = j, un(2), then
Jn b F'@ = jy pin F' 2 from (2.5) (here C(E,) denotes the family of nonempty
closed subsets of E,). In this paper, we assume F,, will be defined on M,,,
Le., we assume the F, described above admits an extension (again we call it
F,) F, : M, — 2% (we will assume certain properties on the extension).

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces.

Theorem 2.1. Let E and E, be as described above, C a convexr subset in
E, U a pseudo-open bounded subset of E, F :Y — 2F with Y C E and
C, CY, for each n € N. Also, assume, for each n € N and x € Y, that
Jn b F () is closed and, in addition, for each n € N, that F, : C,, — 2Fn»
is as described above. Suppose that the following conditions are satisfied:

(2.6) for each n € N, F, € P(C,,C,) is a compact map,

2.7) for each m € N, F,, has no fized points in O W,; here
’ W, =U,NC, and OW, denotes the boundary of W,, in C,,

(2.8) for each m € N, i(C,, F,,W,) # {0},

(2.9) for each ne€{2,3,---}, if ye W, solves y € F,y
' in E,, then jipknint (y) € Wi for ke {l,--- ,n—1}
Then F has a fized point in E.
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Remark 2.2. Note in Theorem 2.1 that if = € C,, then = € Y;, and so there
exists a y € Y with © = j, pin (). Thus F, () = jn un F(y).

Proof. Fix n € N. We now show
(2.10) U, =intU, and C, is convex.

We first show U, is a open subset of E,, so intU, = U,. To see this, note
U, C U,\9U, since if y € U,, then there exists * € X with y = jun(z)
and this together with U = pseudo — intU yields jnun(z) € U, \ U, i.e.,
y € Uy, \ 9U,,. In addition, notice

U, \ oU,, = (intU, UoU,)\ 0U, = intU, \ oU, = intU,
since int U, N U, = 0. Consequently,
U, CU,\0U, =intU,, so U, =intU,.

To show the second part of (2.10), let &, § € p,(C) and A € [0,1]. Then,
for every x € p,'(#) and y € p, ' (9), we have Az + (1 — \)y € C since C'is
convex and so AZ + (1 = A)§ = Aun(z) + (1 — AN pn(y). It is easy to check that
Ain (@) + (1 = N pn(y) = pn(Az + (1 — N)y), so, as a result,

AL+ (1= A)g = pn(Az + (1 = A)y) € pn(C)

and so p,(C) is convex. Now, since j, is linear, we have C, = j,(u,(C)) is
convex and as, a result, C,, is convex. Thus (2.10) holds.

Now, (2.8) guarantees that there exists y,, € W,, = U,NC,, with y, € F,, y,
in E,. Let’s look at {yn}nen. Notice y; € Wi and j; Ml,k:j;?l (yx) € Wy for
ke N\{1} from (2.9). Note jip1nj, (Un) € F1(j1p1ny (Yn)) in Ey; to
see note that, for n € N fixed, there exists € F with y, = j, un (x), so
Jn tin () € Fyy (Yn) = Jn in F(x) on E,, so on Ep, we have

31 110 Gn  (Yn) = 1 1 dn G b () € J1 pn Gt G e F(2)
= J1 in o F(x) = j1 1 F(z) = Fi(j1 1 (2))
= Fl(jl H1n ];1 Jn Wn (x)) =I (]1 Hin ];1(?/71))

Gt dn (Wn) € Fr (1 i gn  (yn)) 0 By gipan gyt (Yn) € Wh for n € N,
together with (2.6) implies that there is a subsequence N7 of N and a z €
Wi with 41 p1.n 750" (yn) — 21 in Eq as n— oo in Nj and 2 € Fj 21 since
F is upper semicontinuous. Also (2.7) implies z; € W;. Let Ny = N\ {1}.
Now jo ptan jnt (yn) € Wa for n € Ny together with (2.6) guarantees that
there exists a subsequence N3 of N; and a 2o € Wy with jo Ha.n I (yn) —
zo in Ey as n — oo in NJ and zo € Fh z5. Also, (2.7) implies z2 € Ws. Note
from (2.4) and the uniqueness of limits that jq p1,2 j2_1 zo = 21 in Ej since
N3 C Ny (note ji pian jnt (Yn) = J1 1,243 " J2 H2m dn* (yn) for n € N3). Let
Ny = N3\ {2}. Proceed inductively to obtain subsequences of integers
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and zp € Wy with jxpgnjn'(yn) — 2 in Ex as n — oo in N} and
2k € Fy, z1,. Also, (2.7) implies z, € Wy. Note jg pk k+1 jk__&l ki1 = 2, in Fy
for k€ {1,2,---}. Also, let N, = N\ {k}.

Fix k € N. Now z; € F), 2z in E}. Note as well that

. .1 . 1 . .1
Rk = Jk Mk, k+1 Jpy1 Fh+1 = Jk Bk k+1 Jp1 Jh+1 HE+1,k+2 Jf 42 Fk+2
. -1 . -1
= Jk Bkk+2 Jpyo Rk+2 = = = Jk Hkom Jm 2m = Tk,m Zm

for every m > k. We can do this for each k € N. As a result y = (2;) €
lim. F, = FE and also note y € Y since z € Wy C Cy C Yy for each k € N.
Thus, for each k& € N, we have

i b (y) = 2k € Frzp = jrp Fy  in By
soy€ Fyin E. U
Remark 2.3. We can replace (2.9) in Theorem 2.1 with

for each n€{2,3,---}, if ye W, solves ye€ F,y
in E,, then jipkni,' (y) €Wy for ke {l,--- ,n—1}.

Remark 2.4. In Theorem 2.1, it is possible to replace C, C Y, with C,
a subset of the closure of Y,, in FE, provided Y is a closed subset of F, so
in this case, we could have Y = C if C is closed. To see this note, from
y = (z) € im_ E, = FE and 7 (Ym) — 25 In Ex as m — oo, we can
conclude that y € Y =Y (note ¢ € Y if and only if, for every k € N, there
exists (zpm) €Y, Thm = T (Tnm) for n >k with xpm,m — ji e (¢) in
Er as m — o0). Thus zp = ji pr (y) € Y and so ji pr (y) € jr i F (y) in
E,. as before.

Remark 2.5. One could write the result in Theorem 2.1 with P replaced by
J(A)¢ using the index theory from [2] (this has the advantage that no knowlege
of homology theory is needed to construct the index).

Essentially, the same reasoning as in Theorem 2.1 yields the following result
(in addition, here we have the analogue of Remark 2.3 and Remark 2.4).

Theorem 2.2. Let E and FE, be as described above, C a conver subset in
E, U a pseudo-open bounded subset of E and F:Y — 2F with Y C E, and
C, CY, for each n € N. Also assume, for each n € N and x €Y, that
Jn b F (x) is closed and, in addition, for each n € N, that F, : C,, — 2F» s
as described above. Suppose that the following condition is satisfied:

(2.11)

for each n € N, F, € P(C,,C,) is of
compact attraction and is a hemicompact map.

Also, assume that (2.7), (2.8) and (2.9) hold. Then F has a fized point in E.
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