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APPROXIMATIONS OF THE ITERATIVE SEQUENCES FOR
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN

BANACH SPACES

Shih-sen Chang, Yeol Je Cho and Haiyun Zhou

Abstract. In this paper, we first introduce some iterative sequences
of Halpern type for asymptotically nonexpansive mappings and nonex-
pansive mappings in Banach spaces and then we discuss strong conver-

gence for the iterative processes. The results presented in this paper
extend, supplement and improve the correspoding main results of Re-
ich [11], Shimizu and Takahashi [13], Shioji and Takahashi [15], [16] and
Wittmann [18].

Throughout this paper, we assume that E is a real Banach space, E∗ is
the dual space of E, D is a nonempty subset of E and J : E → 2E∗

is the
normalized duality mapping defined by

(1) J(x) = {f ∈ E∗, ⟨x, f⟩ = ∥x∥∥f∥, ∥f∥ = ∥x∥}, ∀x ∈ E.

Definition 1. Let T : D → D be a mapping.
(1) The mapping T is said to be asymptotically nonexpansive ([7]) if there

exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

(2) ∥Tnx − Tny∥ ≤ kn∥x − y∥
for all x, y ∈ D and n ∈ N .

(2) The mapping T is said to be nonexpansive if the sequence {kn} appeared
in (2) is a constant sequence {1}, i.e.,

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ D.

Definition 2. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be
uniformly Gâteaux differentiable if, for each y ∈ U, the limit

lim
t→0

∥x + ty∥ − ∥x∥
t

exits uniformly for all x ∈ U.

It is well-known that the following proposition is true:
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Proposition 3. ([6]) Let E be a Banach space with a uniformly Gâteaux dif-
ferentiable norm. Then the normalized duality mapping J : E → 2E∗

defined
by (1) is single-valued and uniformly continuous on each bounded subset of E
from the norm topology of E to the weak∗ topology of E∗.

Let D be a nonempty closed convex subset of X, T : D → D be a nonexpan-
sive mapping and F (T ) denote the set of fixed points of T . For a fixed u ∈ D
and each t ∈ (0, 1), we can define a contractive mapping Tt : D → D by

(3) Ttx = tu + (1 − t)Tx

for all x ∈ D. Then, by Banach’s contraction principle, there exists a unique
fixed point zt ∈ D of Tt, that is, zt is the unique solution of the equation

(4) zt = tu + (1 − t)Tzt.

In [3], Browder proved that, if X is a Hilbert space, then zt converges
strongly to a fixed point of T as t → 0 and, in [11], Reich extended Brow-
der’s result to the setting of uniformly smooth Banach spaces.

The fixed point zt of Tt in (4) is defined implicitly, but we can devise explic-
itly an iterative method which converges in norm to a fixed point of T .

In [8], Halpern studied initially such a method as follows:

Let {αn} be a sequence in (0,1] and x0 ∈ D be any initial value. Define a
sequence {xn} ⊂ D in an explicit and iterative way by

(5) xn = αnu + (1 − αn)Txn, ∀n ≥ 0.

Then, under some additional conditions, the sequence {xn} converges strongly
to a fixed point of T if {αn} satisfies the following control conditions:

αn → 0 (n → ∞),(C1)
∞∑

n=0

αn = ∞ or, equivalently,
∞∏

n=0

(1 − αn) = 0.(C2)

In [9], Lions improves Halpern’s control conditions by showing the strong
convergence of the sequence {xn} if {αn} satisfies (C1), (C2) and the following
condition:

(C3)
αn+1 − αn

α2
n+1

→ 0 (n → ∞).

Note that, for the natural and important choice { 1
n} of {αn}, the results of

both Halpern and Lions don’t work.

In [18], Wittmann overcame the problem mentioned above by proving the
strong convergence of {xn} in Hilbert spaces if {αn} satisfies (C1), (C2) and
the following conditon:

(C4)
∞∑

n=0

|αn+1 − αn| < ∞.
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In [19], Xu suggested the following control condition instead of the conditions
(C3) or (C4) and proved the strong convergence of the sequence {xn}:

(C5)
αn+1 − αn

αn+1
→ 0 or, equivalently,

αn

αn+1
→ 1 (n → ∞).

Recently, in [5], Cho, Kang and Zhou considered the new control condition

(C6) |αn+1 − αn| ≤ ◦(αn+1) + σn,

where
∑∞

n=0 σn < ∞, and proved some strong convergence theorems of the
sequence {xn} for nonexpansive mappings in uniformly smooth Banach spaces.
They improved the corresponding results of Lions [9], Wittmann [18], Xu [19],
[20] and others. For more results and examples on the control conditions of
Halpern’s iteration, see [5].

Now, we are in a position to introduce the following new iterative sequences
of Halpern type for asymptotically nonexpansive or nonexpansive mappings in
Banach spaces:

Let D be a nonempty closed convex subset of E, x ∈ D be a given point
and T : D → D be a mapping.

If T is an asymptotically nonexpansive mapping with a sequence {kn} ⊂
[1,∞) and kn → 1, then we consider the sequence {xn} of Halpern type defined
by

(6)



x0 ∈ D,

xn+1 = αnx + (1 − αn)
1

n + 1

n∑
j=0

T jyn,

yn = βnxn + (1 − βn)
1

n + 1

n∑
j=0

T jxn, ∀n ≥ 0,

where {αn} and {βn} are two sequences in [0, 1].
If βn = 1 for all n ≥ 0 in (6), then yn = xn, and so we have the sequence

{xn} defined by

(7)


x0 ∈ D,

xn+1 = αnx + (1 − αn)
1

n + 1

n∑
j=0

T jxn, ∀n ≥ 0.
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If T is a nonexpansive mapping, then we can consider also the sequence {xn}
of Haplern type defined by

(8)



x0 ∈ D,

xn+1 = αnx + (1 − αn)
1

n + 1

n∑
j=0

T jyn,

yn = βnxn + (1 − βn)
1

n + 1

n∑
j=0

T jxn, ∀n ≥ 0,

where {αn} and {βn} are two sequences in [0, 1].
If βn = 1 for all n ≥ 0 in (8), then we have the sequence {xn} defined by

(9)


x0 ∈ D,

xn+1 = αnx + (1 − αn)
1

n + 1

n∑
j=0

T jxn, ∀n ≥ 0.

Now we consider some special cases of the sequences defined by (6)∼(9) as
follows:

(I) If E = H is a Hilbert space and T : D → D is a nonexpansive mapping,
then the sequence {xn} defined by (9) was introduced and studied in Shimizu
and Takahashi [13]. They showed that, if F (T ) ̸= ∅ and {αn} satisfies 0 ≤ αn ≤
1, αn → 0 and

∑∞
n=0 αn = ∞, then the sequence {xn} converges strongly to

some point in F (T ) which is nea! rest to x in F (T ).

(II) If E is a uniformly smooth Banach space, D is a weakly compact convex
subset of E, then the sequence {xn} defined by

(10)

{
x0 ∈ D,

xn+1 = αnx + (1 − αn)Txn, ∀n ≥ 0,

was introduced and studied in Reich [11], [12]. He showed that, if αn = n−a

with 0 < a < 1, then the sequence {xn} defined by (10) converges strongly to
a fixed point of T in D.

(III) In [15], Shioji and Takahashi extended Wittmann’s result to the case
of Banach space whose norm is uniformly Gâteaux differentiable.

The purpose of this paper is to study the strong convergence problem of
the sequences of Halper type defined by (6)∼(9), respectively. The results
presented in this paper extend, supplement and improve the corresponding
results of Reich [11], Shimizu and Takahashi [13], [14], Shioji and Takahashi
[15], [16] and Wittmann [18].

The following lemmas play an important role in proving our main results:
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Lemma 4. ([4]) Let E be a real Banach space and J : E → 2E∗
be the nor-

malized duality mapping. Then, for any x, y ∈ E, the following hold:

(a) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, j(x + y)⟩

for all j(x + y) ∈ J(x + y) and

(b) ∥x + y∥2 ≥ ∥x∥2 + 2⟨y, j(x)⟩, ∀j(x) ∈ J(x).

Lemma 5. ([10]) Let {an}, {bn} and {cn} be three nonnegative sequences
satisfying the following condition: There exists a positive integer n0 such that

an+1 ≤ (1 − λn)an + bn + cn, ∀n ≥ n0,

where {λn} is a sequence in [0, 1],
∑∞

n=0 λn = ∞, bn = o(λn),
∑∞

n=0 cn < ∞.
Then an → 0 as n → ∞

Now we give our main results in this paper as follows. Let F (T ) denote the
set of all fixed points of the mapping T .

Theorem 6. Let E be a real Banach space whose norm is uniformly Gâteaux
differentiable, D be a nonempty closed convex subset of E and T : D → D be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1
and

∑∞
n=0(en − 1) < ∞, where

(11) en =
1

n + 1

n∑
j=0

kj ≥ 1, ∀n ≥ 0,

and let F (T ) ̸= ∅ in D. Let {αn} and {βn} be two sequences in [0, 1] satisfying
the following conditions:

(12)
∞∑

n=0

αn = ∞.

For any given x ∈ D and n ≥ 1, define a contractive mapping Sn : D → D by

(13) Sn(z) = (1 − dn)x + dnTnz,

where

(14) k2
n − 1 ≤ (1 − dn)2, n ≥ 0, dn ∈ (0, 1), dn → 1 (n → ∞).

Let zn be the unique fixed point of Sn, i.e., zn satisfies the following:

(15) zn = Snzn = (1 − dn)x + dnTnzn, ∀n ≥ 1.

If the sequence {zn} converges strongly to a point z ∈ F (T ) and

∥xn − Txn∥ → 0 (n → ∞),

where {xn} is the sequence of Halpern type defined by (6), then {xn} converges
strongly to the fixed point z if and only if {yn} defined by (6) is bounded.
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Proof. Necessity: If the sequence {xn} converges strongly to z ∈ F (T ), it
follows from (6) and the asymptotically nonexpansive property of T that

(16)

∥yn − z∥

=
∥∥∥∥βn(xn − z) + (1 − βn)

1
n + 1

n∑
j=0!

(T jxn − z)
∥∥∥∥

≤ βn∥xn − z∥ + (1 − βn)
1

n + 1

n∑
j=0

kj∥xn − z∥

= βn∥xn − z∥ + (1 − βn)en∥xn − z∥
≤ en∥xn − z∥, ∀n ≥ 0,

where en (n ≥ 0) is defined by (11). By the assumption that kn → 1 as n → ∞,
the sequence {kn} is bounded and so

(17) 1 ≤ en ≤ sup
n≥0

kn := M1 < ∞.

Since xn → z, it follows from (16) that yn → z as n → ∞ and hence {yn} is a
bounded sequence.

Sufficiency: Let {yn} be a bounded sequence. From (6), we have

(18)

∥xn+1 − z∥

=
∥∥∥∥αn(x − z) + (1 − αn)

1
n + 1

n∑
j=0

(T jyn − z)
∥∥∥∥

≤ αn∥x − z∥ + (1 − αn)
1

n + 1

n∑
j=0

kj∥yn − z∥

= αn∥x − z∥ + (1 − αn)en∥yn − z∥
≤ M1, ∀n ≥ 0,

where M1 = max{∥x − z∥, supn≥0 en · ∥yn − z∥}. Besides, we also have

∥Tnxn − z∥ ≤ kn∥xn − z∥, ∀n ≥ 0,(19)

∥Tnyn − z∥ ≤ kn∥yn − z∥, ∀n ≥ 0,(20)

which show that {xn}, {Tnxn} and {Tnyn} all are bounded sequences. On
the other hands, by the assumption that the norm of E is uniformly Gâteaux
differentiable, it follows from Proposition 3 that the normalized duality map-
ping J : E → E∗ is uniformly continuous on each bounded subset of E from
the norm topology of E to the weak∗ topology of E∗. Hence, for any n ≥ 0, it
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follows from (6) and Lemma 4 (a) that

(21)

∥xn+1 − z∥2

=
∥∥∥∥(1 − αn)

1
n + 1

n∑
j=0

(T jyn − z) + αn(x − z)
∥∥∥∥2

≤ (1 − αn)2
{ 1

n + 1

n∑
j=0

kj

}2

· ∥yn − z∥2

+ 2αn⟨x − z, J(xn+1 − z)⟩
= (1 − αn)2e2

n∥yn − z∥2 + 2αn⟨x − z, J(xn+1 − z)⟩.

Next, we consider the first term on the right side of (21). From (16), we
have

(22)

(1 − αn)2e2
n∥yn − z∥2

≤ (1 − αn)e4
n∥xn − z∥2

= (1 − αn)∥xn − z∥2 + (1 − αn)(e4
n − 1)∥xn − z∥2

≤ (1 − αn)∥xn − z∥2 + (en − 1) · M2,

where M2 = supn≥0{(e3
n + e2

n + en + 1)} · supn≥0 ∥xn − z∥2.
Now, we consider the second term on the right side of (21). From (15), we

have

(23) xn − zm = (1 − dm)(xn − x) + dm(xn − Tmzm), ∀n ≥ 0, m ≥ 1.

Hence, from Lemma 4 (b) and (23), we have

d2
m∥xn − Tmzm∥2

= ∥(xn − zm) − (1 − dm)(xn − x)∥2

≥ ∥xn − zm∥2 − 2(1 − dm)⟨xn − x, J(xn − zm)⟩
= ∥xn − zm∥2 − 2(1 − dm)⟨xn − zm + zm − x, J(xn − zm)⟩
= (1 − 2(1 − dm))∥xn − zm∥2 + 2(1 − dm)⟨x − zm, J(xn − zm)⟩.

Simplifying the above inequality, we have

(24)
d2

m

1 − dm
∥xn − Tmzm∥2 +

1 − 2dm

1 − dm
∥xn − zm∥2

≥ 2⟨x − zm, J(xn − zm)⟩.

Since ∥xn − Txn∥ → 0 as n → ∞, it follows that ∥xn − Tmxn∥ → 0 as n → ∞
for m ≥ 1 and so {xn − Tmxn} is bounded by a positive constant M3. Also,
by the assumption, zm → z ∈ F (T ) and hence we have

lim
m→∞

∥Tmzm − z∥ ≤ lim
m→∞

km∥zm − z∥ = 0,
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i.e., Tmzm → z as m → ∞ and so

(25)
lim

m→∞
∥xn − zm∥ = lim

m→∞!
∥xn − Tmzm∥

= ∥xn − z∥,

which shows that the sequences {xn − zm} and {xn − Tmzm} are bounded
sequences by a positive constant M4.

On the other hand, since dm → 1, km → 1 as m → ∞, we can assume that
dm > 1

2 and 1 ≤ km ≤ 2 for all m ≥ 1 and, from (14), also we have

(26)

∆m,n =
d2

m

1 − dm
∥xn − Tmzm∥2 +

1 − 2dm

1 − dm
∥xn − zm∥2

=
d2

m

1 − dm
∥xn − Tmzm∥2 − 2dm − 1

1 − dm
∥xn − zm∥2

=
2dm − 1
1 − dm

(∥xn − Tmzm∥2 − ∥xn − zm∥2)

+ (1 − dm)∥xn − Tmzm∥2

≤ 1
1 − dm

[(∥Tmxn − Tmzm∥ + ∥Tmxn − xn∥)2 − ∥xn − zm∥2]

+ M2
4 (1 − dm)

=
1

1 − dm
(∥Tmzm − Tmxn∥2 + 2∥Tmxn − xn∥∥Tmzm − Tmxn∥

+ ∥Tmxn − xn∥2 − ∥xn − zm∥2) + M2
4 (1 − dm)

≤ 1
1 − dm

[(k2
m − 1)∥zm − xn∥2 + 2km∥Tmxn − xn∥∥zm − xn∥

+ M3∥Tmxn − xn∥] + M2
4 (1 − dm)

≤ 1
1 − dm

[(1 − dm)2M2
4 + M5∥Tmxn − xn∥] + M2

4 (1 − dm)

≤ (1 − dm)M2
4 +

M5

1 − dm
∥Tmxn − xn∥ + M2

4 (1 − dm),

where M5 = 4M4 + M3. For fixed m ≥ 1, letting n → ∞ in (26), we have
∥Tmxn − xn∥ → 0 as n → ∞ by our assumption (∥Txn − xn∥ → 0 as n → ∞)
and so

M5

1 − dm
∥Tmxn − xn∥ → 0 (n → ∞).

Thus, from (26), it follows that

lim sup
n→∞

∆m,n ≤ 2M2
4 (1 − dm)

and so letting m → ∞ yields

lim sup
m→∞

lim sup
n→∞

∆m,n ≤ 0.
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Thus it follows from (24) that

∆m,n ≥ 2⟨x − zm, J(xn − zm)⟩

and

(27)
0 ≥ lim sup

m→∞
lim sup

n→∞
∆m,n

≥ 2 lim sup
m→∞

lim sup
n→∞

⟨x − zm, J(xn − zm)⟩.

Next, we prove that

lim sup
n→∞

⟨x − z, J(xn − z)⟩ ≤ 0.

In fact, it follows from (27) that, for any ϵ > 0, there exists a positive integer
N such that

(28) lim sup
n→∞

⟨x − zm, J(xn − zm)⟩ ≤ ϵ

for all m ≥ N . Since J : E → E∗ is uniformly continuous from the norm
topology of E to the weak∗ topology of E∗ on each bounded subset of E and
zm → z as m → ∞, we have

lim sup
n→∞

⟨x − z, J(xn − z)⟩ ≤ ϵ.

Since ϵ is arbitrary, we have

(29) lim sup
n→∞

⟨x − z, J(xn − z)⟩ ≤ 0.

Next, set τn = max{⟨x − z, J(xn − z)⟩, 0}. Then τn → 0 as n → ∞.
Substituting (22) into (21), we have

(30)

∥xn+1 − z∥2

≤ (1 − αn)∥xn − z∥2 + 2αn⟨x − z, J(xn+1 − z)⟩ + (en − 1)M2

≤ (1 − αn)∥xn − z∥2 + 2αnτn + (en − 1)M2, ∀n ≥ 0.

Taking an = ∥xn − z∥2, λn = αn, cn = (en − 1)M2 and bn = 2λnτn in (30), we
have

an+1 ≤ (1 − λn)an + bn + cn, ∀n ≥ 0,

since
∑∞

n=0 cn =
∑∞

n=0(en − 1)M2 < ∞, bn = ◦(λn) and
∑∞

n=0 λn = ∞. By
Lemma 5, we know that an → 0 as n → ∞, i.e., xn → z as n → ∞. This
completes the proof. ¤

Remark 7. We can consider an example of the sequence {dn} defined by
dn = 1 − (k2

n − 1)
1
2 for 1 < kn < 2

1
2 (n ≥ 0) and dn = n

n+1 for kn = 1 (n ≥ 0)
which satisfies the condition (14) in Theorem 6.

From Theorem 6, we have the following:
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Theorem 8. If all the conditions in Theorem 6 are satisfied, then the sequence
{xn} defined by (7) converges strongly to a fixed point z of T if and only if {xn}
is bounded.

Proof. In (6), taking βn = 1 for all n ≥ 0, we have yn = xn for all n ≥ 0.
Therefore, the sequence {xn} defined by (6) deduces to the sequence {xn}
defined by (7). The conclusion of Theorem 8 can be obtained from Theorem 6
immediately. ¤

Finally, we give a convergence theorem of the iterative sequences defined by
(8) or (9) for nonexpansive mappings.

Theorem 9. Let E be a real Banach space whose norm is uniformly Gâteaux
differentiable and D be a nonempty closed convex subset of E and T : D → D be
a nonexpansive mapping with F (T ) ̸= ∅. Let {αn} and {βn} be two sequences in
[0, 1] satisfying the condition (12). Let x ∈ D and define a contractive mapping
St : D → D by

(31) St(z) = (1 − t)x + tTz, ∀z ∈ D,

where

(32) 0 < t < 1, t → 1−.

Let zt be the unique fixed point of St. If {zt} converges strongly to a point
z ∈ F (T ) as t → 1− and ∥xn − Txn∥ → 0 as n → ∞, where {xn} is the
sequence defined by (8) or (9), then {xn} converges to the fixed point z of T .

Proof. Since T : D → D is a nonexpansive mapping, T is an asymptotically
nonexpansive mapping with a constant sequence {kn} = {1} for n ≥ 0. This
implies that

en =
1

n + 1

n∑
j=0

kj = kn = 1, ∀n ≥ 0,

and so
∞∑

n=1

(en − 1) =
∞∑

n=1

(kn − 1) = 0 < ∞.

(I) In order to prove Theorem 9, we first prove that the sequences {xn},
{yn} and {xn} defined by (8) and (9), respectively, all are bounded. For the
sake of simplicity, we only prove the sequences {xn}, and {yn} defined by (8)
are bounded.

For the purpose, we denote by

(33) M = max{∥x1 − z∥, ∥x − z∥},
where x ∈ D, z ∈ F (T ) is the points appeared in Theorem 9. Now, by
induction, we can prove the following inequalities:

(34)

{
∥xn − z∥ ≤ M,

∥yn − z∥ ≤ M, ∀n ≥ 1.
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In fact, for n = 1, from (33), we have

∥x1 − z∥ ≤ M

and

∥y1 − z∥ = ∥β1(x1 − z) + (1 − β1)
1
2

1∑
j=0

(T jx1 − z)∥

≤ β1∥x1 − z∥ + (1 − β1)∥x1 − z∥
≤ M.

Hence the conclusion of (34) is true for n = 1. Suppose the conclusion of (34)
is true for n = k. Now, we prove that the conclusion of (34) is also true for the
case of n = k + 1. In fact, it follows from (8) that

∥xk+1 − z∥

=
∥∥∥αk(x − z) + (1 − αk)

1
k + 1

k∑
j=0

(T jyk − z)
∥∥∥

≤ αk∥x − z∥ + (1 − αk)∥yk − z∥
≤ M

and
∥yk+1 − z∥

=
∥∥∥βk+1(xk+1 − z) + (1 − βk+1)

1
k + 2

k+1∑
j=0

(T jxk+1 − z)
∥∥∥

≤ βk+1∥xk+1 − z∥ + (1 − βk+1)∥xk+1 − z∥
≤ M.

This implies that the conclusion of (34) is true and so the sequences {xn} and
{yn} both are bounded.

(II) Taking en = 1, n ≥ 0, dm = t, t ∈ (0, 1), and t → 1−, zm = zt,
Tmzm = Tzt in (16) and (21)∼(27), we can prove similarly that the sequence
{xn} defined by (8) satisfies the following inequalities:

lim sup
n→∞

⟨x − z, J(xn − z)⟩ ≤ 0

and
∥xn+1 − z∥2 ≤ (1 − αn)∥xn − z∥2 + ◦(αn), ∀n ≥ 0.

Therefore, by Lemma 5, it follows that xn → z as n → ∞. This completes the
proof. ¤

Remark 10. It is pointed out by Reich [12], Takahashi and Ueda [17] that,
in Theorem 9, if D satisfies additional condition that “D is a weak compact
convex subset of E”, then the sequence {zt} satisfying

zt = tx + (1 − t)Tzt, ∀t ∈ (0, 1)
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converges strongly to a fixed point z ∈ D of T .

Remark 11. Theorem 9 extends, supplements and improves the corresponding
results of Wittmann [18] and Shioji and Takahashi [15], [16], Shimizu and
Takahashi [13], [14]. Besides, the method of proof is also quitely different from
that that given in [11], [13]-[16] and [18].

Remark 12. Theorem 6 and Theorem 8 are two new results which estab-
lish some necessary and sufficient conditions for the strong convergence of the
sequences defined by (6) and (7), respectively.

Remark 13. Under some conditions of Theorem 6 and Theorem 8, we can
obtain the same results which establish some necessary and sufficient conditions
for the strong convergence of the sequences (of Halpern type) with errors,
respectively.
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