DOI QR코드

DOI QR Code

The Effect of N2 Gas Doping on Sb2Te3Thin Film for PRAM Recording Layer

PRAM 기록막용 Sb2Te3 박막의 질소 첨가에 대한 영향

  • Bae, Jun-Hyun (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Cha, Jun-Ho (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Kim, Kyoung-Ho (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Kim, Byung-Geun (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Lee, Hong-Lim (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Byeon, Dae-Seop (School of Advanced Materials Science and Engineering, Yonsei University)
  • 배준현 (연세대학교 신소재공학과) ;
  • 차준호 (연세대학교 신소재공학과) ;
  • 김경호 (연세대학교 신소재공학과) ;
  • 김병근 (연세대학교 신소재공학과) ;
  • 이홍림 (연세대학교 신소재공학과) ;
  • Published : 2008.05.31

Abstract

In this research, properties of $N_2$-doped $Sb_2Te_3$ thin film were evaluated using 4-point probe, XRD and AFM. $Sb_2Te_3$ material has faster crystallization rate than $Ge_2Sb_2Te_5$, but sheet resistance difference between amorphous and crystallization state is very low. This low sheet resistance difference decreases sensing margin in reading operation at PRAM device operation. Therefore, in order to overcome this weak point, $N_2$ gas was doped on $Sb_2Te_3$ thin film. Sheet resistance difference between amorphous and crystallized state of $N_2$-doped $Sb_2Te_3$ thin film showed about $10^4$ times higher than Un-doped $Sb_2Te_3$ thin film because of the grain boundary scattering.

Keywords

References

  1. S. R. Ovshinsky, 'Reversible Electrical Switching Phenomena in Disordered Structure,' PRL, 21 [20] 1450-53 (1968) https://doi.org/10.1103/PhysRevLett.21.1450
  2. J. Maimon, E. Spall, R. Quinn, and S. Schnur, 'Chalcogenide Based Non-Volatile Memory Technology,' IEEE5, 2289-94 (2001) https://doi.org/10.1109/AERO.2001.931188
  3. S. R. Ovshinsky, S. J. Hudgens, W. Czubatyj, D. A. Strand, and G. C. Wicker, 'Electrically Erasable Memory Elements Having Improved Set Resistance Stability,' U. S. Patent 5414271, May 1995
  4. K. Nakayama, 'Nonvolatile Memory Based on Phase Transition in Chalcogenide Thin Film,' Jpn. J. Appl. Phys., 32 564-9 (1993) https://doi.org/10.1143/JJAP.32.564
  5. K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, 'Patterning of $Ge_2Sb_2Te_5$ Phase Change Material using UV Nano-imprint Lithography,' Microelectronic Engineering, 84 21-4 (2007) https://doi.org/10.1016/j.mee.2006.07.004
  6. N. Nobukuni, M. Takashima, T. Ohno, and M. Horie, 'Microstructural Changes in GeSbTe Film during Repetitious Overwriting in Phase-change Optical Recording,' J. Appl. Phys., 78 6980-88 (1995) https://doi.org/10.1063/1.360465
  7. S. M. Kim, M. J. Shin, D. J. Choi, K. N. Lee, S. K. Hong, and Y. J. Park, 'Electrical Properties and Crystal Structures of Nitrogen-doped $Ge_2Sb_2Te_5$ thin Film for Phase Change Memory,' Thin Solid Films, 469 322-26 (2004) https://doi.org/10.1016/j.tsf.2004.08.142
  8. B. Liu, Z. Song, T. Zhang, J. Xia, S. Feng, and B. Chen, 'Effect of N-implantation on the Structural and Electrical Characteristics of $Ge_2Sb_2Te_5$ Phase Change Film,' Thin Solid Films, 478 49-55 (2005) https://doi.org/10.1016/j.tsf.2004.09.057
  9. R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, N. Yamada, and T. Ohta, 'Nitrogen Doping Effect on Phase Change Optical Disks,' Jpn. J. Appl. Phys., 37 2098-103 (1997) https://doi.org/10.1143/JJAP.37.2098
  10. S. Senakader and C. D. Wright, 'Models for Phase-change of $Ge_2Sb_2Te_5$ in Optical and Electrical Memory Devices,' J. Appl. Phys., 95 504-11 (2004) https://doi.org/10.1063/1.1633984
  11. D. K. Kim, B. Heiland, W. D. Nix, E. Arzt, M. D. Deal, and J. D. Plummer, 'Microstructure of Thermal Hillock on Blanket Al thin Film,' Thin Solid Films, 371 278-82 (2000) https://doi.org/10.1016/S0040-6090(00)00971-8