DOI QR코드

DOI QR Code

Synthesis of Mullite Powders by the Geopolymer Technique

Geopolymer Technique에 의한 Mullite 분말의 합성

  • 손세구 (거화이에스알 기술연구소) ;
  • 이지현 (거화이에스알 기술연구소) ;
  • 이정미 (거화이에스알 기술연구소) ;
  • 김영도 (거화이에스알 기술연구소)
  • Published : 2008.05.31

Abstract

Mullite precursors were synthesized with aluminosilicate gels from mixture of aluminum nitrate and sodium orthosilicate by the geopolymer technique at ambient temperature. Then, the gel was heat-treated in air up to $1200^{\circ}C$ at intervals of $100^{\circ}C$. Raw and heat-treated gels were characterized by TG-DTA, XRD, FTIR, $^{29}Si$ MAS-NMR, TEM. The result to examine the crystallization of behavior though DTA, the synthesized precursors were crystallized in the temperature range from $950^{\circ}C$ to $1050^{\circ}C$. The XRD results showed that the gel compositions were begun to crystallize at various temperature. Also, it was found that the precursors of M-4 begun to crystallize at about $950^{\circ}C$. The M-4 XRD peaks were characterized better than $M-1{\sim}M-3$ at $1000^{\circ}C$. The formation temperature of mullite in this study is much lower than that of previous sol-gel methods, which crystallized at up of $1200^{\circ}C$. TEM investigations revealed that the sample with 10 nm particle size was obtained via heat-treated at $1000^{\circ}C$ for M-4.

Keywords

References

  1. H. Schneider, J. Schreuer, and B. Hildmann, 'Structure and Properties of Mullite-A Review,' J. Eur. Ceram. Soc., 28 329-44 (2008) https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  2. O. Byrgis-Montes, R, Moreno, Maria T. Colomer, and J. C. Farinas, 'Synthesis of Mullite Powders Through a Suspension Combustion Process,' J. Am. Ceram. Soc., 89 2 484-89 (2006) https://doi.org/10.1111/j.1551-2916.2005.00771.x
  3. G. P. Thim, C. A. Bertran, V. E. Barlette, M. I. F. Macedo, and M. A. S. Oliverira, 'Experimental and Monte Carlo Simulation: the Role of Urea in Mullite Synthesis,' J. Eur. Ceram. Soc., 21 759-63 (2001) https://doi.org/10.1016/S0955-2219(00)00260-0
  4. S. S. Sueyoshi and C. A. Contreras Soto, 'Fine Pure Mullite Powder by Homogeneous Precipitation,' J. Eur. Ceram. Soc., 18 1145-52 (1998) https://doi.org/10.1016/S0955-2219(98)00036-3
  5. S. Satoshi, C. Contreras, H. Juarez, A. Aguilera, and J. Serrato, 'Homogeneous Precipitation and Thermal Phase Transformation of Mullite Ceramic Precursor,' Int. J. Inorg. Mater., 3 625-32 (2001) https://doi.org/10.1016/S1466-6049(01)00166-0
  6. D. Amutharani and F. D. Gnanam, 'Low Temperature Pressureless Sintering of Sol-gel Derived Mullite,' Mater. Sci. Eng., A264 254-61 (1999)
  7. G. M. Anilkumar, U. S. Hareesh, A. D. Damodaran, and K. G. K. Warrier, 'Effect of Seeds on the Formation of Sol-gel Mullite,' Ceram. Intern., 23 537-43 (1997) https://doi.org/10.1016/S0272-8842(96)00066-1
  8. J. Parmentier and S. Vilminot, 'Influence of Transition Metal Oxides on Sol-gel Mullite Crystallization,' J. Alloy. Compd., 264 136-41 (1998) https://doi.org/10.1016/S0925-8388(97)00236-3
  9. L. B. Kong, T. S. Zhang, Y. Z. Chen, J. Ma, F. Boey, and H. Huang, 'Microstructural Composite Mullite Derived from Oxides Via a High-energy Ball Milling Process,' Ceram. Intern., 30 1313-17 (2004) https://doi.org/10.1016/j.ceramint.2003.12.022
  10. J. Davidovits, 'Geopolymers and Geopolymeric Materials,' J. Therm. Anal., 35 429-41 (1989) https://doi.org/10.1007/BF01904446
  11. J. Davidovits, 'Inorganic Polymeric New Materials,' J. Therm. Anal., 37 1633-56 (1991) https://doi.org/10.1007/BF01912193
  12. K. Ikeda, 'Preparation of Fly Ash Monoliths Consolidated with a Sodium Silicate Binder at Ambient Temperature,' Cem. Concr. Res., 27 5 657-63 (1997) https://doi.org/10.1016/S0008-8846(97)00053-7
  13. K. Ikeda, 'Consolidation of Mineral Powders by the Geopolymer Binder Technique for Materials Use,' Shigento-Sozai, 114 497-500 (1998) https://doi.org/10.2473/shigentosozai.114.497
  14. K. Ikeda, K. Onikura, Y. Nakamura, and S. Vedanand, 'Optical Spectra of Nickel-bearing Silicate Gels Prepared by the Geopolymer Technique, with Special Reference to the Low-temperature Formation of Lievenbergite ($Ni_2SiO_4$),' J. Am. Ceram. Soc., 84 8 1717-20 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00904.x
  15. T. Iwahiro, Y. Nakamura, R. Komatsu, and K. Ikeda, 'Crystallization Behavior and Characteristics of Mullites Formed from Alumina-silica Gels Prepared by the Geopolymer Technique in Acidic Conditions,' J. Eur. Ceram. Soc., 21 2515-19 (2001) https://doi.org/10.1016/S0955-2219(01)00273-4
  16. R. Vallepu, A. M. Fernandez Jimenez, T. Terai, A. Mikuni, A. Palomo, K. J. D. Mackenzie, and K. Ikeda, 'Effect of Synthesis pH on the Preparation and Properties of K-Al-Bearing Silicate Gels from Solution,' J. Ceram. Soc. Japan, 114 7 624-29 (2006) https://doi.org/10.2109/jcersj.114.624
  17. H. Zhao, K. Hiragushi, and Y. Mizota, ' $^{27}Al and ^{29}Si MASNMR$ Studies of Structural Changes in Hybrid Aluminosilicate Gels,' J. Eur. Ceram. Soc., 22 1483-91 (2002) https://doi.org/10.1016/S0955-2219(01)00487-3
  18. Z. Chen, L. Zhang, L. Cheng, P. Xiao, and G. Duo, 'Novel Method of Adding Seeds for Preparation of Mullite,' J. Materials Processing Technology, 166 183-87 (2005) https://doi.org/10.1016/j.jmatprotec.2004.07.105