DOI QR코드

DOI QR Code

Analysis of Bacterial Community Structure of Biological Activated Carbon Process in Drinking Water Treatment Plant Using FISH

FISH법을 이용한 정수처리장 내 생물활성탄 공정의 세균군집 구조 분석

  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Kim, Mi-A (Korea Bio-IT Foundry Center, Pusan National University) ;
  • Jeong, Seong-Yun (Korea Bio-IT Foundry Center, Pusan National University) ;
  • Kim, Young-Hun (Korea Bio-IT Foundry Center, Pusan National University) ;
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University) ;
  • Kim, Min-Ju (Department of Microbiology, Pusan National University) ;
  • Ryu, Eun-Yeon (Department of Microbiology, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • 손형식 (부산대학교 미생물학과) ;
  • 김미아 (부산대학교 Bio-IT 파운드리센터) ;
  • 정성윤 (부산대학교 Bio-IT 파운드리센터) ;
  • 김영훈 (부산대학교 Bio-IT 파운드리센터) ;
  • 손희종 (부산광역시 상수도사업본부) ;
  • 박근태 (부산대학교 산학협력단) ;
  • 김민주 (부산대학교 미생물학과) ;
  • 유은연 (부산대학교 미생물학과) ;
  • 이상준 (부산대학교 미생물학과)
  • Published : 2008.05.30

Abstract

The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga-Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were $5.4{\times}10^{10}$ (top), $4.0{\times}10^{10}$ (middle) and $2.8{\times}10^{10}$ cells/ml (bottom). The number of the culturable bacteria was from $1.0{\times}10^7$ to $3.6{\times}10^7$ cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.

Keywords

References

  1. 유명호, 김영웅, 손희종, 1998, 낙동강 수계의 수질 변화 특성, 부산광역시 수질연구소 상수도연구소 보, 4, 1-15
  2. 박홍기, 정종문, 박재림, 홍용기, 1999, 낙동강 하류 에서 식물플랑크톤 생산력과 수질 변화와의 관계, 한국환경과학회지, 8, 101-106
  3. 신성교, 이수웅, 박청길, 1996, 낙동강에서 chlor- ophyll-a와 BOD의 상관관계, 한국수질보전학회지, 12, 369-375
  4. 박중현, 1994, 낙동강 수질오염대책 및 음용수 공 급방안, 대한상하수도학회지, 8, 51-63
  5. Kim W. H., Mitsumasa O., 2007, Characterization of organic matters removed by biological activated carbon, J. Environ. Sci., 16, 671-675 https://doi.org/10.5322/JES.2007.16.6.671
  6. 이상훈, 문순식, 신종철, 최광근, 심상준, 박대원, 이진원, 2003, 오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거, 한국생물공학회지, 18, 211-216
  7. Fonseca A. C., Summers R. S., Hernandez M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Wat. Res., 35, 3817-3824 https://doi.org/10.1016/S0043-1354(01)00104-X
  8. Kihn A., Andersson A., Laurent P., Servais P., Prevost M., 2002, Impact of filtration material on nitrification in biological filters used in drinking water production, J. Wat. Supply: Res. & Technol.-Aqua, 51, 35-45
  9. Melin E., Eikebrokk B., Brugger M., Odegaard H., 2002, Treatment of humic surface water at cold temperatures by ozonation and biofiltration, Wat. Sci. Tech.: Wat. Suppl., 2, 451-457 https://doi.org/10.2166/ws.2002.0203
  10. Moll D. M., Summers R. S., Fonseca A. C., Matheis W., 1999, Impact of temperature on drinking water biofilter performance and microbial community structure, Environ. Sci. Technol., 33, 2377-2382 https://doi.org/10.1021/es9900757
  11. 박홍기, 나영신, 정종문, 류동춘, 이상준, 홍용기, 2001, 낙동강 하류 상수원수의 생물활성탄에 의한 수질개선 및 세균분포 특성, 한국환경과학회지, 10, 105-111
  12. Amann R., Ludwig W., Schleifer K. H., 1995, Phylogenetic identification and in situ defection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143-169
  13. Gibride K. A., Lee D. Y., Beaudette L. A., 2006, Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real- time process control, J. Microbiol. Meth., 66, 1-20 https://doi.org/10.1016/j.mimet.2006.02.016
  14. Dorigo U., Volatier L., Humbert J. F., 2005, Molecular approaches to the assessment of biodiversity in aquatic microbial communities, Wat. Res., 39, 2207-2218 https://doi.org/10.1016/j.watres.2005.04.007
  15. Trebesius K., Amann R., Ludwig W., Muhlegger K., Schleifer K. H., 1994, Identification of whole fixed bacterial cells with nonradioactive rRNA targeted transcript probes, Appl. Environ. Microbiol., 60, 3228-3235
  16. Amann R., Ludwig W., Schleifer K. H., 1994, Identification of uncultured bacteria: a challenging task for molecular taxonomists, ASM News, 60 360-365
  17. Woese C. R., 1987, Bacterial evolution, Microbiol. Rev., 51, 221-271
  18. Alfreider A., Pernthhaler J., Amman R., Sattler B., Glockner F. O., Wille A., Psenner R., 1996, Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization, Appl. Environ. Microbiol., 62, 2138-2144
  19. Falkentoft C. M., Müller E., Arnz P., Harremoës P., Mosbaek H., Wilderer P. A., Wuertz S., 2002, Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH, Wat. Res., 36, 491-500 https://doi.org/10.1016/S0043-1354(01)00231-7
  20. Bouvier T., Giorgio P. A. D., 2003, Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports, FEMS Microbiol. Ecol., 44, 3-15 https://doi.org/10.1016/S0168-6496(02)00461-0
  21. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H., 1994, Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol., 60, 792-800
  22. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A., 1993, In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes, Appl. Environ. Microbiol., 59, 2293-2298
  23. 김영오, 박태주, 이태호, 2004, In situ 측정기법을 이용한 호기성 고정생물막의 형상 변화와 미생물 활성 및 분포 해석, 대한환경공학회지, 26, 566-572
  24. APHA, 1992, Standard methods for the examination of water and wastewater. APHA-AWWA-WPCD, New York
  25. 日本水道協會, 1985, 日本上水道試驗方法, 630- 637pp
  26. 長澤, 1990, 粒狀活性炭表層のおける微生物の動向, 第41回日本水道硏究發表會發表論文集, 1-3pp
  27. Manz W., Amann R., Ludwig W., Wagner M., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria : Problems and solutions, Appl. Environ. Microbiol., 15, 593-600
  28. Porter K. G., Feig Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25, 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  29. Hicks R. E., Amann R. I., Stahl D. A., 1992, Dual staining of natural bacterioplankton with 4',6-diamidino- 2-phenylindole and fluorescent oligonucleotide probes targeting kingdomlevel 16S rRNA sequences, Environ. Microbiol., 58, 2158-2163
  30. Huber I., Spanggaard B., Appel K. F., Rossen L., Nielsen T.. Gram L., 2004, Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum), Appl. Environ. Microbiol., 96, 117-132 https://doi.org/10.1046/j.1365-2672.2003.02109.x
  31. O'Sullivan C., Burrel P. C., Clarke W. P., Blackall L. L., 2007, A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization, Appl. Microbiol., 103, 1332-1343 https://doi.org/10.1111/j.1365-2672.2007.03362.x
  32. Prescott L. M., Harley J. P., Klein D. A., 2002, Microbiology, McGraw-Hill Higher Education, New- York
  33. Delong E. F., Wickham G. S., Davis A. A., 1993, Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Oceans, Science, 243, 1360-1363 https://doi.org/10.1126/science.2466341