DOI QR코드

DOI QR Code

Modal Analysis of a Large Truss for Structural Integrity

건전성 평가를 위한 대형 트러스 구조물의 모드분석

  • Park, Soo-Yong (Division of Architecture and Ocean Space, Korea Maritime University)
  • 박수용 (한국해양대학교 해양공간건축학부)
  • Published : 2008.04.30

Abstract

Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

구조물의 대표적 동적특성인 고유진동수 및 모드형상은 손상평가, 구조계추정기법 등과 결합한 구조건전성 평가분야에서 매우 중요한 기초 자료로 활용되고 있다. 그러나 해양구조물이나 대경간 교량과 같은 대형 구조물의 경우 진동원을 정확히 계측하기 힘들기 때문에 소규모의 구조물에 많이 쓰이는 기존의 모달 테스트 기법으로는 구조물의 진동특성을 구할 수 없다. 본 논문에서는 경간이 긴 대형 트러스 구조물을 대상으로 가속도 응답만으로 고유진동수 및 모드형상을 추출할 수 있는 방법을 연구하였다. 트러스 구조물의 수치해석 모델을 이용하여 가속도 응답 및 주파수 응답함수의 생성과정, 모드분석을 통한 고유진동수 및 모드형상 추출과정을 상세히 설명하였다. 제안한 방법으로 얻은 모드형상은 고유치 해석으로부터 계산된 모드형상과 비교하여 정확성을 검증하였으며, 모의 손상을 통한 손상평가기법에 적용하여 타당성을 입증하였다.

Keywords

References

  1. Choi, S., Park, S., Bolton, R, Stubbs, N., and Sikorsky, C.(2004), "Periodic Monitoring of Physical Property Changes in a Concrete Box-girder Bridge", Journal of Sound and Vibration, Vol. 278, No. 1-2, pp. 365-381. https://doi.org/10.1016/j.jsv.2003.10.005
  2. Ewins, D. J. (1984), "Modal Testing: Theory and Practice", Letchworth, Hertfordshire, U.K., Research Studies Press.
  3. Gudmundson, P. (1982), "Eigenfrequency Changes of Structures Due to Cracks, Notches, or Other Geometrical Changes", J. Mechanics and Physics of Solids, Vol. 30, No. 5, pp. 339-353. https://doi.org/10.1016/0022-5096(82)90004-7
  4. NE'scope TM (2001), "Version 2.0 Operating Manual", Vibrant Technology, Inc., Jamestown, California.
  5. MIDAS/Gen (2002), "Version 6.3.2", MIDAS Information Technology Co., Ltd.
  6. Pandey, A. K, Biswas, M., and Samman, M. M. (1991), "Damage Detection from Changes in Curvature Mode Shapes", Journal of Sound and Vibration, Vol. 145, No. 2, pp. 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  7. Park, S., Bolton, R., and Stubbs, N. (2006), "Blind Test Results for Nondestructive Damage Detection in a Steel Frame", Journal of structural Engineering, ASCE, Vol. 132, No. 5, pp. 800-809. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(800)
  8. Park, S., Kim, Y., and Stubbs, N. (2002), "Nondestructive Damage Detection in Large Structure via Vibration Monitoring", Electronic Journal of Structural Engineering http://www.ejse.org/, Vol. 2, pp. 59-75.
  9. Stubbs, N. and Osegueda, R. (1990), "Global Non-Destructive Damage Evaluation in Solids", Int. J. Analytical and Experimental Modal Analysis, Vol. 5, No. 2, pp. 67-79.

Cited by

  1. Experimental Modal Test on a Scale Model of Floating Structure vol.36, pp.2, 2012, https://doi.org/10.5394/KINPR.2012.36.2.89