DOI QR코드

DOI QR Code

Intracellular delivery and anti-tumor activity of polyethyleneglycol liposomes containing cationic lipid

양이온성 지질이 포함된 PEG 리포솜의 세포내 이입 및 항암효력 평가

  • Jung, Soon-Hwa (Center for drug discovery technologies, Korea Research Institute of Chemical Technology) ;
  • Kim, Sung-Kyu (Center for drug discovery technologies, Korea Research Institute of Chemical Technology) ;
  • Jung, Suk-Hyun (Center for drug discovery technologies, Korea Research Institute of Chemical Technology) ;
  • Seong, Ha-Soo (Center for drug discovery technologies, Korea Research Institute of Chemical Technology) ;
  • Cho, Sun-Hang (Center for drug discovery technologies, Korea Research Institute of Chemical Technology) ;
  • Shin, Byung-Cheol (Center for drug discovery technologies, Korea Research Institute of Chemical Technology)
  • 정순화 (한국화학연구원 신약기반기술연구센터) ;
  • 김성규 (한국화학연구원 신약기반기술연구센터) ;
  • 정석현 (한국화학연구원 신약기반기술연구센터) ;
  • 성하수 (한국화학연구원 신약기반기술연구센터) ;
  • 조선행 (한국화학연구원 신약기반기술연구센터) ;
  • 신병철 (한국화학연구원 신약기반기술연구센터)
  • Published : 2008.06.20

Abstract

Liposomes are spherical vesicles composed of lipid bilayer membranes. However, the conventional liposomes have been found to be plagued by rapid opsonization and taken up by the reticuloendothelial system (RES), resulting in shortened circulation time and limited intracellular uptake to target cell. In this study, polyethyleneglycol-cationic liposomes (PCL) containing cationic lipid and DSPE-mPEG were prepared by thin film cast-hydration method. The PEG liposomes had approximately $97.0{\pm}1.3\;nm$ of mean particle diameter and $-21.7{\pm}1.2\;mV$ of zeta potential value. PCL had $96.4{\pm}1.8\;nm$ of mean particle diameter and $-8.7{\pm}1.1\;mV$ of zeta potential value with a decrease of about 10 mV compared to the PEG liposomes. Loading of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX in liposomes was about $95.0{\pm}1.9%$. Intracellular uptake and cytotoxicity of PCL were higher than that of PEG liposomes to murine B16F10 melanoma cells. In addition, anti-tumor activity of PCL was similar to that of PEG liposomes on growth of A549 human lung carcinoma in BALB/c mice. Consequently, PCL modified with cationic lipid may be applicable as anticancer drug carriers that can increase intracellular uptake and therapeutic efficacy.

Keywords

References

  1. A. D. Bangham, M. M. Standish and J. C. Watkis, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Bio., 13, 238-252 (1965) https://doi.org/10.1016/S0022-2836(65)80093-6
  2. Gregoriadis, G. and Florence, A. T., Liposomes in drug delivery: Clinical, diagnostic and ophthalmic potential, Drugs, 45, 15-28 (1993)
  3. H. D. Han, B. C. Shin and H. S. Choi, Doxorubicinencapsulated thermosensitive liposomes modified with poly (N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum, Eur. J. Pharm. Biopharm., 62, 110-116 (2006) https://doi.org/10.1016/j.ejpb.2005.07.006
  4. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145-160 (2005) https://doi.org/10.1038/nrd1632
  5. Allen, T. M. and Moase, E. H., Therapeutic opportunities for targeted liposomal drug delivery, Adv. Drug Deli. Rev., 21, 117-133 (1996) https://doi.org/10.1016/S0169-409X(96)00402-4
  6. Sharma, A. and Sharma, U. S., Liposomes in drug delivery: progress and limitations, Int. J. Pharm. Biopharm., 154, 123-140 (1997) https://doi.org/10.1016/S0378-5173(97)00135-X
  7. M. L. Van Slooten, O. Boerman, K. RomOren, E. Kedar, D. J. A. Crommelin and G. Storm, Liposomes as sustained release system for human interferon-$\gamma$: biopharmaceutical aspects, Biochim. Biophys. Acta, 1530, 134-145 (2001) https://doi.org/10.1016/S1388-1981(00)00174-8
  8. Moghimi, S. M. and Szebeni, J., Stealth liposomes and long circulating nanoparticles: circulation profiles, protein-binding properties and activation of complement in blood, Prog. Lipid Res., 42, 463-478 (2003) https://doi.org/10.1016/S0163-7827(03)00033-X
  9. Liu, D., Biological factors involved in blood clearance of liposomes by liver, Adv. Drug Deli. Rev., 24, 201-213 (1997) https://doi.org/10.1016/S0169-409X(96)00459-0
  10. Gabizon, A. and Papahadjopoulos, D., Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci., 85, 6949-6953 (1988)
  11. B. Ceh, M. Winterhalter, P. M. Frederik, J. I. Vallner and D. D. Lasic, Stealth liposomes: From theory to product, Adv. Drug Deli. Rev., 24, 165-177 (1997) https://doi.org/10.1016/S0169-409X(96)00456-5
  12. Klibanov, A. L., Maruyama, K., Torchilin, V. P. and Huang, L., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes, FEBS Lett., 268, 235-237 (1990) https://doi.org/10.1016/0014-5793(90)81016-H
  13. Patel, H. M., Serum opsonins and liposomes: their interaction and opsonophagocytosis, Crit. Rev. Ther. Drug Carrier Syst., 9, 39-90 (1992)
  14. Moghimi, S. M. and Patel, H. M., Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system: the concept of tissue specificity, Adv. Drug Deli. Rev., 32, 45-60 (1998) https://doi.org/10.1016/S0169-409X(97)00131-2
  15. Huang, S. K., Mayhew, E., Gilani, S., Lasic, D. D., Martin, F. J. and Papahadjopoulos, D., Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma, Cancer Res., 52, 6774-6781 (1992)
  16. Torchilin, V. P. and Trubetskoy, V. S., Which polymers can make nanoparticulate drug carriers long-circulating?, Adv. Drug Deli. Rev., 16, 141-155 (1995) https://doi.org/10.1016/0169-409X(95)00022-Y
  17. Slepushkin, V. A., Simoes, S. and Dazin, P., Sterically stabilized pH-sensitive liposomes: Intracellular delivery of aqueous contents and prolonged circulation longevity in vivo, J. Biol. Chem., 272, 2382-2388 (1997) https://doi.org/10.1074/jbc.272.4.2382
  18. Thomas, L. A., Simon, S. J. and Kent, J., Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release, Prog. Lipid Res., 44, 68-97 (2005)
  19. Wu, J., Lee, A., Lu, Y. and Lee, R. J., Vascular targeting of doxorubicin using cationic liposomes, Int. J. Pharm., 337, 329-335 (2007) https://doi.org/10.1016/j.ijpharm.2007.01.003
  20. C. R. Dass, Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumor vasculature, Int. J. Pharm., 267, 1-12 (2003) https://doi.org/10.1016/j.ijpharm.2003.08.010
  21. L. A. Carvalho and A. M. Carmona-Ribeiro, Interaction between cationic vesicles and serum proteins, Langmuir, 14, 6077-6081 (1998) https://doi.org/10.1021/la980345j
  22. H. D. Han, A. Lee, C. K. Song, T. Hwang, H. Seong, C. O. Lee and B. C. Shin, In vivo distribution and anti-tumor activity of heparin-stabliized doxorubicin-loaded liposomes, Int. J. Pharm., 313, 181-188 (2006) https://doi.org/10.1016/j.ijpharm.2006.02.007
  23. H. D. Han, A. Lee, T. Hwang, C. K. Song, H. Seong, J. Hyun and B. C. Shin, Enhanced circulation time and antitumor activity of doxorubicin by comblike polymerincorporated liposomes, J. Control. Release, 120, 161-168 (2007) https://doi.org/10.1016/j.jconrel.2007.03.020
  24. Haran, G., Cohen, R., Bar, L. K. and Barenholz, Y., Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases, Biochim. Biophys. Acta, 1151, 201-215 (1993) https://doi.org/10.1016/0005-2736(93)90105-9
  25. T. Hwang, H. D. Han, D. H. Seo, H. Seong, J. H. Kim and B. C. Shin., Enhanced Intracellular Uptake of Anticancer Agent by Liposomes Modified with Folate-poly(ethylene imine)-phospholipid Conjugates, J. Tissue Engineering and Regenerative Medicine, 3, 114-119 (2006)
  26. X. B. Xiong, Y. Huang, W. Lu, X. Zhang, H. Zhang, T. Nagai and Q. Zhang, Enhanced intracellular delivery and improved anti-tumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic, J. Control. Release, 107, 262-275 (2005) https://doi.org/10.1016/j.jconrel.2005.03.030
  27. P. Chandaroy, A. Sen, P. Alexandridis and S. W. Hui, Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome-cell adhesion, Bioch. Biophys. Acta, 1559, 32-42 (2002) https://doi.org/10.1016/S0005-2736(01)00431-X
  28. C. R. Dass, Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature, Int. J. Pharm., 267, 1-12 (2003) https://doi.org/10.1016/j.ijpharm.2003.08.010
  29. S. Krasnici, A. Werner, M. E. Eichhorn, M. Schmitt-Sody, S. A. Pahernik, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks and M. Dellian, Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels, Int. J. Cancer, 105, 561-567 (2003) https://doi.org/10.1002/ijc.11108