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IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF
ARCTIC SEA ICE AND NUMERICAL SIMULATION

CHAO XIN*, ENMIN FENG, ZH1JUN LI AND LU PENG

ABSTRACT. This paper studies the multi-domain coupled system of one
dimensional Arctic temperature field and establishes identification model
about the thermodynamic parameters of sea ice (heat storage capacity,
density and conductivity) by the so-called output least-square estimate ac-
cording to the temperature data acquired by a monitor buoy installed in
the Arctic ocean. By the optimal control theory, the existence and de-
pendability of weak solution and the identifiability of identification model
have been given. Moreover, necessary optimality condition is proposed.
Furthermore, the optimal algorithm for the identification model is con-
structed. By using the optimal thermodynamic parameters of Arctic sea
ice, the numerical simulation is implemented, and the numerical results of
temperature distribution of Arctic sea ice are demonstrated.
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1. Introduction

Sea ice which possesses seven percent of the ocean is an essential part of Arctic
Circle. It affects the dynamics and thermodynamics between the atmosphere
and the ocean obviously, so it has important influence on global climate change.
In contrast with sea water and land, sea ice has its own characteristics: its
albedo is at least 60% higher than that of land surface, as greatly reduces the
absorption to the solar radiation of the sea; sea ice melting can absorb mass
heat, so sea water can be diluted; the cover of sea ice can weaken the heat
exchange between the ocean and the atmosphere, prevent the evaporation of
sea water, and suppress sensible heat flux conduction from sea water to the
atmosphere. Under the same atmospheric environmental condition, the heat flux
in sea ice is one order of magnitude lower than that in neighboring sea water.
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To be important, Arctic plays an extremely important role in global climate
change as a result of its unique natural condition and geographical position.
Since weather and hydrologic condition in different sea fields are variable, the
thermodynamic parameters of snow, sea ice, and sea water are also different. In
addition, these thermodynamic parameters play a key role in many fields, such
as oil industry, seafaring, fishery etc. Especially, the quantitative analysis of
the thermodynamic parameters is very important. M. Winton (2], C.M. BltZ 3]
established the multi-layer thermodynamic model of sea ice. J. Su, H. D. ‘Wu, S.
Bai [4], [5] analyzed the sea ice thickness and heat budget at the sea ice surface
according to the energy conversation law. Z.H. Lin, Q. Le, X.Q. Wang [6], B.
Cheng [7] studied the ice temperature, the ice range and definite conditions
via differential equation and partial differential equation. Zh.J. Li, X.L.. Dong,
Zh.H. Zhang [8] described the description of data collection of Arctic sea ice
physical properties in the second Chinese Arctic Expedition. Q.F. Wang, D.X.
Feng (9] made an qualitative analysis to the parameter identification problem of
nonlinear abstract parabolic distributed parameter systems with one parameter
via variational method. H. Gao [10] discussed the system governed by a semi-
linear parabolic equation and gave the necessary conditions for optimal control.

Based on the temperature of atmosphere, snow, sea ice and sea water acquired
by a monitor buoy installed in the Arctic ocean from August, 2003 to April,
2004, we study the multi-domain coupled system of Arctic temperature field.
By the optimal control theory, we describe the uniqueness and continuity of
weak solution of this system. Moreover, we establish the dlstnbuted parameter
identification model about the thermodynamic parameters of sea ice(heat storage
capacity, densn:y and conductlwty) and dlscuss the identifiability of this model
and propose necessary optimality condition. On the other hand, we construct the
optimal algorithm of identification model and obtain the optimal thermodynamic
parameters of sea ice from the ice floe. Furthermore, we realize the numerical
simulation, and show the numerical results of temperature distribution of Arctic
sea ice in this paper. - -

2. The rnodel of one dlmensmna.l Arctlc temperature field

From the temperature of Arctic snow, sea ice and sea water, we find that the
gradient change along vertical direction is far greater than that along horizontal
direction, and the heat exchange exists mainly in vertical direction and can
be ignored in horizontal direction. Hence, the temperature distribution can be
described by one dimensional temperature field equations. |

- Set any point of interface between snow and sea ice be coordmate orlgln and
axis z represent the vertical direction. - | | | 2

Let [y, [y, I3 be the thickness of snow, sea ice and sea water( ) respective-ly.
Set D1 = [—l1, 0], D2 = [0, &], D3 = [l2, Iz + l3] be the domain representing
snow, sea ice and sea water respectively. I = [0, tf] C R be the time domain of
the coupled system. Moreover, we set D = D; U D2 U. D3 CR, @Q=Dx1IC
R*, Q;=D;xICR? j=1,23. -
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By using the energy conversation law and the theory of Fourier heat exchange,

the temperature field equations and definite conditions of Arctic snow, sea.ice
and sea water can be given as:

3T(.z,. t)

(@0 = 2 (ka2 ) 1. @0eQ
| T(z,0) = To(z), ' ' B zeD
< _ B ¢
6T(z,.t) lz=—1, = ho(t), - S tel
\ T(z’t)lz#lrl-la = T3(t)a tel

where ho(t) = (h(T(z,t)—T.)/ Ks)|,=—1,. h is heat exchange parameter between
snow and atmosphere. 7 is air temperature.

Let Si(z) be the salinity in z € D,, which can be expressed approximately as
follows:

Si(z) = 14.24 — 19.39z, 0 <2z<0.97Tm;
T 3.2, 0.57m < z < Ip.

Let cs, ps, Ks, ¢, pi, Ki, cw, pw and K,, be average heat storage capacity,
density and heat conductivity of snow, sea ice and sea water respectively. So, in
equation (1), we have |

CsPs, (z,1) € h
(co)(z,t) = § cipi, (z,t) € Q2 (2)
Cw Pw _ (Z,t) € QS
and |
- KS! (Zat) € Ql . |
K(z,t)=1¢ K;, (z,t)€Q2 @
| ' Kwa (Z’t) € QB '
Set ¢5, ps, Ks, Cw, pw and K, be constants, and ¢ = (¢, pi, K;) be the
identification parameters vector. We have ¢ € R} obv1ously |
Let g € R3 and g4 € R3 be lower and upper bounds of g € R3 because of
engineering meaning. Thus, the admissible set of g should be

Qaa={q:9- <q<gq;} CR. 4

where the symbol ’<’ is for every elements of the vectors.
In equation (1), the heat source term g(z,t) can be described by :

gl(zat)a (23t) S Ql |
9(z,t) =< g2(2,1), (7)) EeR: (5)
: 0, (Z,t) € Q3 _ '

where | | . | S
gi(z,t) = v (1 — aj)rjlojexp(—r;|2|), i=1,2 (6)
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Y3» @5, loj and r; are the solar shortwave radiation, sea ice albedo transmis-
sion and extinction coeflicient of sea ice respectively.

From above, the multi-domain coupled system (T'CS) of Arctic temperature
field can be defined by equation (1).

3. The properties of multi-domain coupled system

Based on the physical properties of Arctic snow, sea ice and sea water, we
introduce the assumption:

Al : In the coupled system T'CS, functions ¢ : D x I — R, Tp : D —
R, ho: I — R, T3:1 — R should be bounded, continuously differentiable. The
derivatives in terms of all the variables are also bounded.

As for the system T'CS, according to the assumption Al, we set u(z, t)
T'(z,t) — (z — l2 — l3)ho(t) — T3(t). Then the system T'CS has been changed:

( %% — a(z,t)a% (K(Z,t)g%) = p(z,t;9),

u(z,0) = ug(z),

p(zt:0) = (ep)(2,1)) ™ (ho(6) 5= +g(2,8) = (ep) (2, 8)(z ~ 2 — Ls) i)

~(ep)(=,T3(1)),

Uo(z) = To(z) — (Z‘-“ lo — l3)h0(0) — T3(0)
We write this system as TT'C'S. We introduce H(D), real Hilbert space of
DC R WesetV = {'v 2w € H(D), Ploerty = vlmtyat, = 0}, and then

V C H(D). Let (-,-)g and < -,- >y be the inner product of H and V, |- |g and
| - ||v be the norm of H and V H* and V* be the dual space, and < -, >y vy
denote the duality pairing respectively. Then (V, H,V*) is Gelfand trlple space
with V — H = H* < V* which means that the embedding V «— H is
continuous and V is dense in H. Similarly, the embedding H* — V™ is also
continuous and H* is dense in V*.

- By using principle of virtual work, we define

a(t,q;u,v) = / K(z,t) 8u a(a(azzt) )dz, Vu,veV,

with the properties below:

Property B1: aft, q; u,v) is a bilinear functional on V' x V, and there exists a
const M > 0, such that the inequality |a(t, ¢; u, v)| < M|jully||v||v holds.

Property B2: As for a(t, ¢; u, v), there exist 3o > 0 and A\g € R such that the
inequality a(t, q;v,v) + Ao|v|% > Bollv||% holds for anyv e V.
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From Property B1, Property B2 and [13], we have,
3 A(t,q) € B(V,V*), st alt,qu,v) =< A(t,Q)u,v >v-v,

where B(V, V™) denotes all the bounded linear operators mapped from V into
V=, | |

For V q € QQqq, fD p(z,t;q)vdz is bounded. Hence, according to Riesz repre-
sentation theorem, there exists f(z,¢;q) € V*, for V v € V, such that

[ patigyodz =< £z t:0),v >y
D
So, the system TTCS can be changed to abstract parabolic equations below:

{ 6u(g}t; 4) + A(t,q)u = f(z,t;q), tel
u(z,0;9) = uo(2).
We denote this system as APE. |

According to (9], we give the definition of weak solution to the system APFE.

Definition 1. Function u = u(z,t;q) is called as a weak solution to the system
APE if for any v € V, u satisfies the following:

a '3
< U(;t q),v >y-v +al, g ulz, 5 9),v) = (f(z,59),v)H-

Moreover, we can give the definition of weak solution to the system T'CS
similarly.

By [9] and [13] and analysis above, we can get the theorem of weak solution
to the system APFE as follows.

Theorem 1. ForV q € Quq, the system APE admits a unique weak solution
u(z,t;q), and u(z,t;q) is continuous with respect to parameter ¢ € Qaq.

Similarly, using Theorem 1, we have,

Corollary 1. ForV q € Qaa, the system TCS admits a unique weak solution
T(z,t;q), and T(z,t;q) is continuous with respect to parameter ¢ € Qad-

Let S C L3(I; H(D))NC(I; H(D)) be the set of weak solutions to the system
TCS, ie., | |

S = {T(z,t;q9) € L*(I; HD))NC(I; H(D)) | T(z,t;q) is the weak solution
to the system T'C'S with respect to q € Qaq}-

Proposition"l. Let S be defined by the equality above. Then S is a compact
set in L*(I; H(D)) N C(I; H(D)).

Proof. From Corollary 1, the map ¢ — T(2,t;q) : Qaa — S C L2(I; H(D)) N
C(I; H(D)) is continuous and Q.4 C R3 is bounded and closed. Hence, S is a
compact set in L2(I; H(D)) N C(I; H(D)). | | | O

4. Identification of multi-domain coupled system
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For the sake of researching the characteristic and correlativity of Arctic snow,
sea ice, sea water and surface atmosphere, monitoring the sea ice freezing and
melting process and evaluating its influence on global weather, satellite tracker-
localizer was installed in the Arctic ocean which can monitor the data including
wind speed, wind direction, air temperature, air pressure, sea ice and sea water
temperature at test points from August, 2003 to April, 2004 Moreover, _the'
thickness of snow, sea ice and salinity had also been provided.

Let Tg(zk,t;), 7 = 1,2,--- ,l;; k= 1,2,--- 1, be the test temperature at
zx € D and t; € I. The temperature distribution function Ty(z,t), (2,t) € @
can be fitted by the test data collection {Td(zk, )} According to the continuity
of temperature change, the function Ty(z,t) : Q@ — R is continuous and the
coupled system T'C'S admits a unique weak solutlon T(z,t;q) with respect to
parameter ¢ € Qqq. In order to estimate the error between T'(z, t; q) and Ty4(z, t),
by the so-called output least-square estimate, the cost function is given by: o

| J@) =Tz t9) ~ Talz)EQr =~ ()
Then, identification model of the coupled system T'C'S can be expressed as: .
o ITCSP : min J(q)
s.t. T(z,t9) €S

g € Qad
Because the map ¢ — T'(z,t;9) : Qag — S is contlnuous J(q) defined by (7)
is continuous with respect to parameter ¢ € Qzq. We note that Qad C R
is nonempty, bounded and closed, therefore, there exrsts at least one optlmal
parameter ¢* € (a4, such that

J@)<JI@, Y 9E Qua
So, we can get the following theorem:

Theorem 2. Assume that Al holds. Let Qaq be given by (4) and let T(z,t; q) be
a weak solution of the system T'CS with respect to parameter q. If the cost func-
tion is given by (7), there exists at least one optimal parameter ¢* € Qaq such that
1T (2,¢ q_) = Td(z,t)HzC(Q,R)_ attains its minimum ||T._(z,tl; q) — Td_(z,_t)l%(Q,R).

We now consider necessary optimality condition. As we all know, one clas-
sical method to obtain the necessary condition for ¢* is to calculate the first
variation of J(q) around ¢*. If T'(2,t;q) is Gateaux differentiable at ¢* € Q.4
and T'(z,t;¢") is its Gateaux derivative at ¢ = ¢*, then J(g) is Gateaux differ-
entiable at ¢ = ¢*, and the necessary condition for the optimal parameter q” is
characterized by the following variational inequality:

J(@)eg—q) =0, quQads

where J (¢") denotes the Gateaux derivative of J(q) at g = q In [9], as is
proved, T(z,t; q) is Gateaux differentiable at ¢* € Qqq. Therefore our necessary
optimality condition is feasible. - | T
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In order to be convenient for calculating,- the cost function (7) can be modified

\iZT(% tj3 9 Td(zks 75 (8)
k=1 j3=1 o .

Thus the practical identification problem which we write as model ITCSP; can
be converted to: __

ITCSP; : min Jy(q)
 st. T(ztig)eS
q € Qua
Similarly, using Theorem 2, we have,
Corollary 2. Assume that Al holds. Let Qqq be given by (4) and let T(z,t:q)
be a weak solution of the system TCS with respect to parameter q. If the cost

function is given by (8), there exists at least one optimal pa,mmetev" q* € Qad,
such that Jy(q) attains its minimum Jg(qg*). |

5. Optimal algorithm and numerical simulation
5.1 Optimal algorithm
In this section, we propose the concrete optimal algorithm according to classi-
cal Hooke-Jeeves direct search algorithm. Considering magnitude of these para-
meters, we set different precision and step-size to every search direction, different

from classical Hooke-Jeeves direct search algorithm. Qur algorithm is as follows,
where n is the number of parameters: :

Algorithml . |
Step 1. Select starting points ¢!} € Q.q, lower and upper bounds of the ad-
missible set ¢_, g, n directions ey, e, -+, en, starting step-sized;, da, -+ , dn,

acceleration factor a > 0, precision €, €2, ‘-, €, > 0 and maximum iteration
number k,qz.

Step 2. Set v{1) = ¢, k=45 =1,

Step 3. 1f d; > ¢; and (g-); < ( ) < < (q4)j, solve the system T'CS with
respect to parameter p(9) by using ﬁnlte dlﬂerence scheme, get numerical solution
T(z,t;9\9), and compute Jz(v\9)) by (8), and go to Step 4. Else, go to Step 5.

Step 4. Solve the system T'CS with respect to parameter 1)(-7) + dje; in the

same way, get T'(z,t; v\ )+d363), and compute Jy (v +dje;) by (8). go to Step
5. |

Step 5. If J4(v\D) + dje;) < Jy(v1)), set v = o) 4 djej, and go to Step
6. Else, go to Step 7.

Step 6. If j <n,set j=7+1 and go to Step 3. Else go to Step 9. |

Step 7. Solve the system T'CS with respect to parameter ) — d; €5 get
T(z,t;v9) —d;e;), and compute Jz(v¥) — dje;) by (8). go to Step 8. _

Step 8. If Jd('v(J) —djej) < Ja(v'), set v(3+1) = o) — g, eJ, and go to Step
6. Else, set v+l = U(J) and go to Step 6.
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Step 9. If Jy(v(™ D)) < J4(qR)), set gkt = ¢(ntD) (1) = glk+1) g (glk+1) -
g®), k=k+1, j=1, and go to Step 3. Else, go to Step 10.

Step 10. It d; <e€;, =1, 2, --+, nor k 2 kmaz, stop the programming,
and select ¢* = ¢(¥). Else, go to Step 11. |
. Step 11. If dJ >_€j and (q.._)j < q;k) < (Q+)j, set d_y = %r’—’ J = 1,.-2,\""- , M.

Set ¢(1) = q(k), q(k+1) = q(k)’ k=k+1,7=1, and go t() Step 3.

where the temperature 7°(z,¢; ) is calculated by using the semi-implicit finite
difference scheme, which is stable unconditionally.

5.2 Numerical simulation

According to the optimal algorithm above, we carry out the numerical simu-
lation and calculate the temperature distribution of Arctic sea ice from the real
data collection acquired by a monitor buoy installed in the Arctic ocean.

During the computation, we cite the following experimented formulas:

CiPi = CipPio -{-_AS?;(Z)/(T(Z, t) — 273.15)2,

Ki = Kio + BS.(2)/(T(z,t) - 273.15),

where A, > 0.

We choose n = 5, and give the optimal parameters according to Algorithm]l.
ie., cip = 2100.44 J/(kg-K), pio = 923.442 kg/m?3, Kzo = 1.7993 W/(m-K),
A =1.72007 * 107 J-K/kg, 8 = 0.124442 W-m? /kg. - o o

During implement, the time ranges from November.1, 2003 to March.10, 2004.
The average error between the calculated temperature T'(z,t;¢*) and the test
temperature Ty(z,1) for these days is defined by:

[z lt __ | | |
e= [ DD (T(ak,tj39) ~ Talzk, t5))2/ (l=le). )
\ k=1 j=1 - |
After calculation by (9), the average error is e = 1.07°C.

- And the absolute average error for these days is defined by:

- (10)

el—-‘

Z ZTd(zk, /(Lols)

k=1 j=1

After calculation by (10), the absolute average error is el = 14.2%.

In Fig. 1, Fig. 2, Fig. 3 and Fig. 4, the time ranges from November.17, 2003
to March.10, 2004. Let the horizontal direction be the time t(/minute) and
the vertical direction be the temperature(/centigrade). Set T'(z,t;q) denote the
calculated temperature and T'd(z,t) denote the test temperature respectively in
the figures.

Fig. 1 shows the calculated temperature and test temperature at test points.
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The comparison from Nov. 17,2003 to Mar. 10,2004
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Fig. 1 The calculated temperature and the test temperature at test points

The companscn at 2=0.84m from Nov, 17,2003 to Mar. 10,2004
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Fig. 2 The calculated temperature at test points

From Fig. 1 and Fig. 2, we find our numerical simulation is valid, because
the calculated temperature curves correspond to geophysical laws. The deeper
the sea ice is, and the least it is influenced by the air temperature change.

Fig. 3 and Fig. 4 show the comparisons between the calculated temperature
and test temperature at location zx = 0.64m and z; = 1.28m respectively.
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The companson al z=0.64 m from ,Nov_,17' 2003 to Mar.10, 200 4
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Fig. 3 The comparisons at location zx = 0.64m
The comparison at z=1.28 m from Nov.17, 2003 to Mar. 10, 200 4
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~ Fig. 4 The comparisons at location zx = 1.28m
From Fig. 3 and Fig. 4, we find the error between the calculated temperature
and test temperature is less than 1°C at most of time points. Therefore, our
algorithm and numerical simulation are valid. |

6. Conclusions

This paper studies the multi-domain coupled system of one dimensional Arctic
temperature field, and establishes identiﬁcation model about the thermodynamic
parameters of sea ice (heat storage capacity, density and conductivity).. The
uniqueness and continuity of the weak solution of this system are described.
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Moreover, the identifiability of the identification model has been established
and necessary optimality condition is proposed. On the other hand, the optimal
algorithm is constructed. Furthermore, the numerical simulation is carried out,
and the numerical results of temperature distribution of Arctic sea ice are shown
in this paper. | | | .
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