Enhancement of In Vivo Bone Regeneration Efficacy of Human Mesenchymal Stem Cells

  • Kang, Sun-Woong (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Jae-Sun (Department of Orthopaedic Surgery, Ansan Hospital, College of Medicine, Korea University) ;
  • Park, Min Sun (Department of Chemical Engineering, Hanyang University) ;
  • Park, Jung-Ho (Department of Orthopaedic Surgery, Ansan Hospital, College of Medicine, Korea University) ;
  • Kim, Byung-Soo (Department of Bioengineering, Hanyang University)
  • Published : 2008.05.31

Abstract

We investigated whether transplantation of osteogenically differentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and the use of an hydroxyapatite (HAp) scaffold can enhance the in vivo bone formation efficacy of human BMMSCs. Three months after implantation to the subcutaneous dorsum of athymic mice, transplantation of osteogenically differentiated human BMMSCs increased the bone formation area and calcium deposition to 7.1- and 6.2-folds, respectively, of those of transplantation of undifferentiated BMMSCs. The use of the HAp scaffold increased the bone formation area and calcium deposition to 3.7- and 3.5-folds, respectively, of those of a polymer scaffold. Moreover, a combination of transplantation of osteogenically differentiated BMMSCs and HAp scaffold further increased the bone formation area and calcium deposition to 10.6- and 9.3-folds, respectively, of those of transplantation of undifferentiated BMMSCs seeded onto polymer scaffolds. The factorial experimental analysis showed that osteogenic differentiation of BMMSCs prior to transplantation has a stronger positive effect than the HAp scaffold on in vivo bone formation.

Keywords

References

  1. Arinzeh, T. L., S. J. Peter, M. P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala. 2003. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85: 1927-1935 https://doi.org/10.2106/00004623-200310000-00010
  2. Attin, T., K. Becker, C. Hannig, W. Buchalla, and R. Hilgers. 2005. Method to detect minimal amounts of calcium dissolved in acidic solutions. Caries Res. 39: 432-436 https://doi.org/10.1159/000086852
  3. Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala. 1998. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 80: 985-996 https://doi.org/10.2106/00004623-199807000-00007
  4. Cheng, S. L., J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli. 1994. Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277-286 https://doi.org/10.1210/en.134.1.277
  5. Chen, Y. L., H. C. Chen, H. P. Lee, H. Y. Chan, and Y. C. Hu. 2006. Rational development of GAG-augmented chitosan membranes by fractional factorial design methodology. Biomaterials 27: 2222-2232 https://doi.org/10.1016/j.biomaterials.2005.10.029
  6. Derubeis, A. R. and R. Cancedda. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: Limitations and recent advances. Ann. Biomed. Eng. 32: 160-165 https://doi.org/10.1023/B:ABME.0000007800.89194.95
  7. Ehara, A., K. Ogata, S. Imazato, S. Ebisu, T. Nakano, and Y. Umakoshi. 2003. Effects of alpha-TCP and TetCP on MC3T3- E1 proliferation, differentiation and mineralization. Biomaterials 24: 831-836 https://doi.org/10.1016/S0142-9612(02)00411-8
  8. El-Ghannam, A., P. Ducheyne, and I. M. Shapiro. 1997. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J. Biomed. Mater. Res. 36: 167-180 https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<167::AID-JBM5>3.0.CO;2-I
  9. Flautre, B., K. Anselme, C. Delecourt, J. Lu, and P. Hardouin. 1999. Histological aspects in bone regeneration of an association with porous hydroxyapatite and bone marrow cells. J. Mater. Sci. Mater. Med. 10: 811-814 https://doi.org/10.1023/A:1008923625599
  10. Frank, O., M. Heim, and M. Jakob. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J. Cell Biochem. 85: 737-746 https://doi.org/10.1002/jcb.10174
  11. Gazit, D., G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman, and I. Moutsatsos. 1999. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: A novel cell-mediated gene therapy. J. Gene Med. 1: 121-133 https://doi.org/10.1002/(SICI)1521-2254(199903/04)1:2<121::AID-JGM26>3.0.CO;2-J
  12. Haynesworth, S. E., J. Goshima, V. M. Goldberg, and A. Caplan. 1992. Characterization of cells with osteogenic potential from human marrow. Bone 13: 81-88 https://doi.org/10.1016/8756-3282(92)90364-3
  13. Jaiswal, N., S. E. Haynesworth, and A. I. Caplan. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64: 295-312 https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
  14. Kim, S. S., K. M. Ahn, M. S. Park, J. H. Lee, C. Y. Choi, and B. S. Kim. 2007. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. 80: 206-215
  15. Kim, S. S., M. S. Park, C. Y. Choi, and B. S. Kim. 2006. Accelerated bone-like apatite growth on porous polymer/ ceramic composite scaffolds in vitro. Tissue Eng. 12: 2997-3006 https://doi.org/10.1089/ten.2006.12.2997
  16. Kim, S. S., M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim. 2006. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399-1409 https://doi.org/10.1016/j.biomaterials.2005.08.016
  17. Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, et al. 2000. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49: 328-337 https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q
  18. Marcacci, M., E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, and R. Cancedda. 2007. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13: 947-955 https://doi.org/10.1089/ten.2006.0271
  19. Murphy, W. L., S. Hsiong, T. P. Richardson, C. A. Simmons, and D. J. Mooney. 2005. Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro. Biomaterials 26: 303-310 https://doi.org/10.1016/j.biomaterials.2004.02.034
  20. Ohgushi, H., M. Okumura, S. Tamai, E. C. Shors, and A. I. Caplan. 1990. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate. J. Biomed. Mater. Res. 24: 1563-1570 https://doi.org/10.1002/jbm.820241202
  21. Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. 2000. Tissue-engineered bone regeneration. Nat. Biotechnol. 18: 959-963 https://doi.org/10.1038/79449
  22. Pittenger, M. F., A. M. Mackay, S. C. Beck, P. K. Jaiswal, R. Douglas, J. D. Mosca, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147 https://doi.org/10.1126/science.284.5411.143
  23. Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci. 2001. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344: 385-386 https://doi.org/10.1056/NEJM200102013440516
  24. Shang, Q., Z. Wang, W. Liu, Y. Shi, L. Cui, and Y. Cao. 2001. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg. 12: 586-593 https://doi.org/10.1097/00001665-200111000-00017
  25. Son, J. H., S. R. Park, H. J. Kim, and B. H. Min. 2006. Regeneration of a cartilage tissue by in vitro culture of chondrocytes on PLGA microspheres J. Microbiol. Biotechnol. 16: 1577-1582
  26. Song, H. B., D. C. Park, G. M. Do, S. L. Hwang, W. K. Lee, H. S. Kang, et al. 2006. Effect of exopolymers of aureobasidium pullulans on improving osteoporosis induced in ovariectomized mice. J. Microbiol. Biotechnol. 16: 37-45
  27. Song, S. J., O. Jeon, H. S. Yang, D. K. Han, and B. S. Kim. 2007. Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. J. Microbiol. Biotechnol. 17: 1113-1119
  28. Yoshikawa, T., H. Ohgushi, M. Akahane, S. Tamai, and K. Ichijima. 1998. Analysis of gene expression in osteogenic cultured marrow/hydroxyapatite construct implanted at ectopic sites: A comparison with the osteogenic ability of cancellous bone. J. Biomed. Mater. Res. 41: 568-573 https://doi.org/10.1002/(SICI)1097-4636(19980915)41:4<568::AID-JBM8>3.0.CO;2-A