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Simple Graphs for Complex Prediction Functions

Myung-Hoe Huh!), Yonggoo Lee?

Abstract

By supervised learning with p predictors, we frequently obtain a prediction func-
tion of the form y = f(x1,...,z,). When p > 3, it is not easy to understand the
inner structure of f, except for the case the function is formulated as additive. In
this study, we propose to use p simple graphs for visual understanding of com-
plex prediction functions produced by several supervised learning engines such as
LOESS, neural networks, support vector machines and random forests.

Keywords: Visualization; prediction function; LOESS; neural network model; support
vector machine; random forest.

1. Introduction and Proposed Graphs

Suppose that we obtain a prediction function of the form y = f(z1,...,2,) as a
byproduct of supervised learning with p predictors. It would be very valuable if we visu-
alize the inner structure of f. Non-additive prediction functions with p > 3, however, are
not directly visible since the manifolds are embedded in 4 or more dimensional Euclidean
space. The aim of this study is to propose the use of p simple graphs, one for each
predictor, for visual aids of complex prediction functions produced by several supervised
learning methods such as LOESS, neural network models, support vector machines and
random forests.

Suppose that we are given y = f(zy1,...,2,), for a; < z; <b; (j =1,...,p). To
visually understand f, we propose the “conditional predictive graphs” of z; versus y, one
for each predictor.

Definition 1.1 We define a conditional predictive graph CPG(j) by the plot of trajec-
tory curve

(z;, f(x),...,zj,...,25)), forall z; in (a;,b;),

with fixed x/;) = (2%,...,2} y,2},,...,2p). Thus, CPG(j) varies as x%’j) assumes
different values. Practically, we may draw CPG(j) for n observed or simulated cases of
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Figure 1.1: CPG’s of f(x1,x2,3,74) = 1 + 275 T3 — T, sin (7 24)

. For the purpose of illustration of CPG’s, we consider
- flzy, 0,23, 74) =1 + 22503 —aysin(mzy), —-1<z;<1 (j=1,234).

Figure 1.1 shows CPG’s for z1, x2, 3, z4. For visual effect, we use 50 (=n) Monte Carlo
generated cases from Uniform(—1,1). We observe that CPG(1)’s are parallel each other.
Thus we may infer that f is the sum of two separable components, of which one is a
function of x; and the other does not depend on z,. Similarly, CPG(4)’s are parallel
each other. Hence the role of x4 is same as that of z;. On the other hand, nonparallel
CPG(2)’s and CPG(3)’s indicate that there exists the interaction between z» and z3 in
determining f. Thus we conclude that f can be expressed as

f(x1, 22,23, 24) = s(z1) + t(74) + u(z2, T3).
Figure 1.2 shows perspective plots for two components of f(z1,z2,x3,Z4):
fl (.’131,334) =T — T4 sin (71' 334) _ELIld f2($2;$3) = 23’,‘% 3.

In the left plot, we see that f; (z1,z4) are additive sum of component functions. In the
right plot, we notice that fo(z2,x3) contains interactions.
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Figure 1.2: Perspective plots of two components of f(zi,z2,z3,24)(f1(z1,24) = 1 —
z4 sin (mxz4) (left) and fo(ze, 23) = 223 x3 (right))

The proposed graphs can be contrasted to the special case of Friedman and Popescu’s
plots (Friedman and Popescu, 2005) of partial dependency functions, which are equal to
the pointwise average of CPG’s for each predictor. By taking the average, however, the
plots lose the information tag indicating whether the function is additive in that variable
or not.

In coming sections, we will demonstrate the conditional predictive graphing (CPG)
method for visualizing prediction functions produced by various supervised learning en-
gines such as LOESS, neural network, support vector machines and random forests.

2. LOESS

LOESS fits locally a polynomial surface by one or more numerical predictors (Cleve-
land et al. 1992). We will demonstrate our CPG method as applied to a LOESS model
of stackloss data, which consists of 21 cases on the response variable stack.loss and
three predictors ‘Air Flow’, ‘Water Temp’ and ‘Acid Conc.” (Brownlee, 1960).

Figure 2.1 shows three CPG’s for LOESS prediction function with span=1 corre-
sponding to respective predictors. Observation numbers are plotted at (x,y), where z
= realized predictor and y = predicted response. The third CPG’s by ‘Acid Conc.’ is
peculiar in two respects. First, four cases (1, 2, 3, 21) are quite different from the others.
Second, there exists a sharp cut at z = 80. Such roughness led us to try another LOESS
with a larger span. Figure 2.2 contains three CPG’s for LOESS prediction function with
span=5. Now, the sharp cut at some value of ‘Acid Conc.’ disappears. But, four cases

(1, 2, 3, 21) still show peculiar patterns in CPG’s corresponding to ‘Water Temp’ and
‘Acid Conc.’.



346 Myung-Hoe Huh, Yonggoo Lee

Bredloss
Flradl.oss :

Pradgloss.

Bred.Loss-

Fred Loss:

Acid Coe.

Figure 2.2: CPG’s of LOESS (span=5) model for stackloss data

3. Neural Networks

We will assume a single-hidden-layer neural network which contains two neurons in
the hidden layer to the PimaIndiansDiabetes2 data (Ripley, 1996; R’s mlbench library).
Response variable is dichotomous diabetes (pos or neg) and predictors are log transform
of (1+pregnant), glucose, pressure, triceps, mass, pedigree and age. Only the
complete cases with no missing values are fitted to the model (n = 532).

Figure 3.1 shows CPG’s for singe-hidden-layer neural network’s predictions which are
softmax transform of combined signals from hidden neurons. We see that the figures
are too dark, caused by over-plotting more than 500 curves. Hence we need “thinning”.
Figure 3.2 shows systematically sampled CPG’s (with fraction rate 1/20). Now, pictures
look more nice compared to original Figure 3.1 We notice that three predictors are
important in determining the response: glucose, mass and pedigree. These predictors
are positively associated with diabetes, the response.
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Figure 3.1: CPG’s of neural network model for PimaIndiansDiabetes2 data

Also, CPG’s in Figure 3.2 overall indicate that the interactions among predictors
are not strong: Individual curves do not cross each other. According to Jiang and
Owen (2002) who analyzed the same data, the additivity contributes 78-85% of the total
variation.
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Figure 3.2: Systematically sampled CPG’s (from Figre 3.1)

4. Support Vector Machines

We fitted the support vector machine(SVM) which allows probability predictions
for famous iris data, which consists of four predictors (sepal.length, sepal.width,
petal.length, petal.width) for three different kinds of species (setosa, versicolor,
virginica). Figure 4.1 shows CPG’s for the predicted probability of “versicolor”. We
may see that there are two bundles of curves. Without difficulty, we could link one bundle
of curves to “setosa” and the other bundle to either “versicolor” or “virginica”.
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Figure 4.1: CPG’s of support vector machine for iris data
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Figure 4.2: CPG’s of support vector machine for iris data. Versicolor vs. Virginica

As a next step, we imposed the SVM for a subset data of iris belonging to
“versicolor” and “virginica”. Figure 4.2 shows the resulting CPG’s. Now, SVM as bi-
nary classifier becomes more easily understandable. 1) Petal.length and petal.width
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Figure 5.1: CPG’s of random forest model for iris data

are important predictors, while the role of sepal.length and sepal.width is lim-
ited. 2} Small petal.length and petal.width predicts “versicolor”, while large
petal.length and petal.width predicts “virginica”.

5. Random Forests

Figures 5.1 and 5.2 show CPG’s of Breiman’s random forest models (Breiman, 2001)
fitted to the iris data with three species (setosa, versicolor, virginica) and two
species (versicolor vs. virginica), respectively. We may verify visually that Figures
5.1 and 5.2 from random forests correspond to Figures 4.1 and 4.2 originated from SVM.

However, there is one apparent difference: The random forest is more additive than the
SVM in this case.

6. Concluding Remarks

By conditional predictive graphs (CPG’s), we can capture overall features of the
complex function of p predictors produced by supervised learning engines. Nevertherless,
CPG’s do not show all details of the prediction function. But CPG’s could be useful
in diagnosing the additivity of variables for the predictive function at hand, as Kim’s
graphical method (Kim, 2008) for generalized linear models. We need a further research
in that direction.
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Figure 5.2: CPG’s of random forest model for iris data. Versicolor vs. Virginica

References

Breiman, L. (2001). Random forests, Machine Learning, 45, 5-32.

Brownlee, K. A. (1960). Statistical Theory and Methodology in Science and Engineering,
Jhon Wiley & Sons, New York.

Cleveland, W. S., Grosse, E. and Shyu, W. M. (1992). Local regression models, Chapter
8 of Statistical Models in S (eds by J.M. Chambers and T.J. Hastie), Wadsworth &
Brooks/Cole.

Friedman, J. H. and Popescu, B. E. (2005). Predictive learning via rule ensembles,
Technical Report, Department of Statistics, Stanford University.

Jiang, T. and Owen, A. B. (2002). Quasi-regression for visualization and interpreta-
tion of black boxr functions, Technical Report, Department of Statistics, Stanford
University.

Kim, J. H. (2008). A graphical method of checking the adequacy of linear systematic
component in generalized linear models, Communications of the Korean Statistical
Society, 15, 27-41. |

Ripley, B. D. (1996). Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge.

[Received February 2008, Accepted March 2008]



