Communications of the Korean Statistical Society Vol. 15, No. 3, 2008, pp. 379386

The Choice of a Primary Resolution and Basis
Functions in Wavelet Series for Random or Irregular
Design Points Using Bayesian Methods

Chun Gun ParkV

Abstract

In this paper, the choice of a primary resolution and wavelet basis functions are
introduced under random or irregular design points of which the sample size is free
of a power of two. Most wavelet methods have used the number of the points as
the primary resolution. However, it turns out that a proper primary resolution is

much affected by the shape of an unknown function. The proposed methods are
illustrated by some simulations.
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1. Introduction

Consider a nonparametric regression

Yi =f($i)+€i, 1=1,...,n, (1.1)

where f(z) € Lo(R) an unknown function, the z’s are random or irregular design points
satisfying z; < z;4; and €’s independent and identically distributed random variables
from the distribution N(0,5¢). The goal is to estimate the unknown function f(-). Many
techniques have been developed to estimate f(-). Over the last decade, the nonparamet-
ric regression was dominated by wavelet shrinkage and wavelet thresholding estimators.
To explain terminology, a shrinkage rule shrinks wavelet coefficients to zero and a thresh-
olding rule sets to zero all coefficients below a certain level.

Among wavelet-based techniques, Bayesian approaches to a wavelet series have been
studies as a technique on wavelet shrinkage and thresholding rules. These methods
impose a prior model on the wavelet coefficients of the wavelet series approximating to
the unknown function. The prior for each wavelet coefficient is typically a mixture of
two non-degenerate distributions, or a mixture of a non-degenerate distribution and a
point mass at zero, the latter of which represents sparseness of the wavelet series. For a
recent comparative simulation study on wavelet estimators in nonparametric regression
(see, Antoniadis et al., 2001).

Under a fixed primary resolution, thresholding rules are applied to the coefficients
whose resolution levels are equal to or finer than the primary resolution. The role of the
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primary resolution parameter is similar to that of the usual bandwidth in linear smoother.
The relationships among error variance, thresholding rules and primary resolutions were
investigated by Hall and Patil (1995). Park et al. (2008) have recently proposed on
selecting the primary resolution and wavelet basis functions under equally spaced points.

In this paper, the focus will be on the choice of the primary resolution and wavelet
basis functions with random or irregular designs. Various attempts to tackling the prob-
lem of the irregular designs have been made: see, for instance, the interpolation method
of Kovac and Silverman (2000); the binning method of Antoniadis et al. (1997); and
the transformation method of Cai and Brown (1998), or its recent refinement by Maxim
(2002) for a random design. See also Pensky and Vidakovic (2001).

The organization of the paper is as follows. Section 2 describes wavelets. In Section
3, Bayesian approaches to selecting the primary resolution and wavelet basis functions
are proposed. Section 4 gives the results of the simulation studies. The conclusion is
addressed in Section 5.

2. Wavelet Series

An orthogonal wavelet basis in L{R) is a collection of functions obtained as transla-
tions and dilations of a scaling function ¢ and a wavelet function v (Daubechies, 1992).
The wavelet series is one possible way to represent the unknown function. The form of
the wavelet series is following;:

F@) =) ssrbnr@) + > > djrbx(z), (2.1)
keZ j=>Jo kEZ

for any integer.

The wavelet series with a primary resolution is to project the data from the (2.1) onto
a sequence of the multiresolution analysis(MRA) of Mallat (1989). It can be expressed
in terms of the scaling function only:

Prf(@) =) snidrnr@) + > > dixthjr(@) =Y cmk)Bmk)(@). (22)
keZ j>Jo kEL kez

The MRA construction implies that lim,, ., P f(z) = f(z).
For detailed expositions of the statistical settings of wavelets (see, Hérdle et al., 1998;
Vidakovic, 1999; Abramovich et al., 2000; Antoniadis and Sapatinas, 2001).

3. The Propos'ed Bayesian Selection for Wavelet Series

3.1. The choice of a primary resolution

Given a primary resolution, the model (2.2) can be rewritten as
Y =W,.0m + ¢, - - (3.1)

“where Y = (y1,...,yn)7T is a response variable, W,, is the orthogonal matrix n x N(m)
associated with the wavelet basis functions, {¢, x} and {¥;r} and B, = ('B(mal)’ ey
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Bim,N(my))" is a N(m) x 1 vector with the wavelet coefficients. Here, N(m) denotes the
number of wavelet basis functions at the primary resolution m. We assume the error
vector ¢ follows N(0,0%1,). Direct application of a Bayesian model selection model for
the choice of a primary resolution has some drawbacks: (1) it tends to select a low primary
resolution regardless of the unknown function as the sample size increases and (2) the
computational cost is expensive since the number of the wavelet coefficients increases
rapidly as the level of a primary resolution gets high.

To tackle these problems we use the following priors to obtain a posterior probability
of the primary resolution parameter m:

1. Given ¢ and m, the prior for B¢, x) is
P (ﬁ(m,kﬂaz, m) o« Constant, 1<k < N(m). (3.2)
2. The prior of m is noninformative, that is,
Pm)=—, m=0,1,...,M —1, (3.3)

for a large positive integer M. Thus, all of the resolution levels up to M — 1 are
equally likely a priori.

From (3.2), (3.3) and the orthonormal property W W,, = I,, the posterior probability
of a level m is given by

1
P(m|o?,Y) x exp (FYTWmT/VgY) . (3.4)

o}
A detailed derivation is given in Appendix from Park et al. (2007). A level of primary
resolution is then determined as follows. the posterior probability (3.4) increases as m

increases. Therefore, given a large error variance which is a nuisance parameter, we use
this criterion by selecting a low level m where

R . P(mj+1|Ya 02)
(G+1,5) — P(mj|Y,02) ’

(3.5)

1s closest to 1. Here m, denotes a resolution at level 5. However, in practice, we choose
m of the case that the first hits a predetermined number ¢ which close to 1. Note that

since the 0 is required, the proposed method is not an automatic procedure for selecting
the primary resolution level.

3.2. The selection of wavelet basis functions

The main idea is to select a subset among N (m) basis functions that makes the most
significant contribution to the posterior probability given by (3.1). There are 2% (m)
subsets to choose, which increases very rapidly as m gets large. The computation of
posterior probabilities for all these subsets would be out of reach. An efficient way of

tackling this problem is to rearrange the N(m) wavelet basis functions in the order of
their importance as we describe it below.
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Given the primary resolution, we rewrite the linear model (3.1) in order to select the
wavelet basis function as follows:

Here, W is the resulting matrix obtained by exchanging the columns of W, according to
the size of the elements of |W£Y|: put the values of ¢, 1) in the first column for which

|35 1 Bm,1)(xi)y:| is the smallest among |3 7 , Gm.y(Ti)yi|, 7 = 1,...,N(m) and
those of ¢, n(m)) in the last for which |Z?‘=1 @ (m,N(m)) (mz)yz[ is the largest among those.
Furthermore, o, denotes the coefficient vector obtained by rearranging the elements of
Bm according to W,

We consider the following N(m) linear model: for s =0,1,...,N(m) — 1,

Y = Wm(s)as + g, (37)

where W,,,(s) denotes the matrix obtained by removing the first s columns of W, and a;
is the coefficient vector obtained by removing the first s elements of a,,. Selection of a
subset of wavelet basis function is done by choosing s among the above N(m) models. We
use this idea in the same Bayesian framework as in the selection of a primary resolution.

Following the same way in the previous subsection, we take the following priors for
a’s and s

1. Given o and m, the prior for a; = (0541, .. ,aN(m))T is
P(alo?, m) o« Constant. (3.8)

2. The prior of s is noninformative, that is,
P(s)= ——, s=0,1,...,N(m)—1. (3.9)

Thus, all of the models have equally likely a, priori.
Then, the probability of s is given by

1
P(s|6?,Y) o exp (——-—YTWm(S)Wg(S)Y) . (3.10)

202
A choice of s in (3.10) follows the same way as in the selection of a primary resolution.

4. Simulation Study

In this section, we report the results of simulations made for the choice of a primary
resolution and wavelet basis functions based on our proposed method.

4.1. Experimental setup

All the data of the simulations is of the form (1.1). The sample sizes selected were
n = 100 (intermediate sample size) and n = 2000 (large). For each sample size, we used
two test functions to assess the choice of a primary resolution and wavelet basis functions,
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Table 4.1: Formulae of the test functions

Test function Formula
Cosine g1(z) = 0.5c0s(2.27r/(3 + 8x)) + 0.5
Doppler g2(z) = 0.6{y/z(1 — z)sin(2.17/(z + 0.05)) + 0.5} + 0.2

Table 4.2: Primary resolution for the test functions

Primary resolution
Test function | Error variance | Sample size | Jy Detail
0 [0 1 2 3 4 5 6 7 8
o n = 100 100
Cosine 0-05 n = 2000 100
0.12 n = 100 100
' n = 2000 100
5 n= 100 100
Dopnler 0.05 n = 2000 96 4
PP 012 n = 100 89 11
' n = 2000 100

which are listed in Table 4.1. The values of o, variance of the noise, were chosen:
0% = 0.05? and 0.12. For the simulation of each test function, 100 sets of observations
were generated and all sample points were determined according to a uniform distribution
from the interval (0, 1).

The first function is a Cosine function which is necessary to be a relatively lower
primary resolution. The second function is a Doppler function which might need a higher
primary resolution. The both of the functions might be not necessary all wavelet basis
functions under a given primary resolution.

To report the results of the simulations, we used the MSE as the numerical measure,
that is if given the primary resolution, f(t;) is the empirical estimate function value at any
point at which values of scaling and wavelet functions can be computed by interpolation
or simply considering the value at the closest point in the grid, then

MSE(H) = = S { st - Fie}

1=1

Throughout the simulation study, Daubeachies’s wavelet with vanishing moment 8 has
been used.

4.2. The choice of the primary resolution and wavelet basis functions

In this simulation, an empirical study for assessing the choice of the primary resolution
and wavelet bases in the wavelet series was conducted. Table 4.2 shows the results
of selecting primary resolutions for each function with 100 repetitions. The proposed
method estimates lower primary resolutions for the Cosine function and higher resolutions
for the Doppler function. In addition, Figure 4.1 shows the posterior probabilities of
primary resolutions and the ratios from (3.5) when the Doppler, n = 2000 and ¢? = 0.05°
were used. Here m = 3 was selected. Note that —1 in z-axis label of Figure 4.1 denotes
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Table 4.3: Simulation results in term of integrated MSE

Error variance Model Sample size Function
Cosine Doppler
Full n = 100 8.37e — 4 1.07e — 2
0.052 n = 2000 6.86e — 4 4.50e — 3
Reduced n = 100 9.85¢ — 4 1.14e — 2
n = 2000 6.83¢ — 4 4.50e — 3
Full n = 100 1.76e — 3 2.08¢ — 2
0.12 n = 2000 7.26e — 3 4.82¢ — 3
Reduced n = 100 1.87¢ — 3 2.12e¢ — 2
n = 2000 7.25e — 3 4.82¢ — 3

the case of a wavelet series which is expanded only smoothing coefficients without detailed
coeflicients. Figure 4.2 shows that the probability does not change until 72 wavelet bases
with the small magnitudes of the elements of W'Y are deleted.

To evaluate the choice of wavelet bases, two types of models were conducted: (1) a full
model with all wavelet bases and (2) a reduced model with the selective wavelet bases.
Given the predetermined primary resolutions. Table 4.3 shows the integrated MSE(f)’s
values for the full model and the reduced model. As can be seen from Table 4.3, the

reduced model displays very similar results even though the only selected wavelet bases
are used for estimation.

5. Conclusion

The proposed Bayesian methods are a wavelet shrinkage method for selecting the
primary resolution and wavelet basis functions. To implement wavelet thresholding, two
steps are proposed: first step to choose a proper primary resolution level and the second
to select wavelet basis functions that are corresponding to significant coefficients. This
approach is simpler than exiting Bayesian methods for the wavelet shrinkage.
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