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A Feasible Two-Step Estimator for
Seasonal Cointegration'
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Abstract

This paper considers a feasible two-step estimator for seasonal cointegration as
the extension of Briiggemann and Liitkepohl (2005). It is shown that the reduced-
rank maximum likelihood(ML) estimator for seasonal cointegration can still produce
occasional outliers as that for non-seasonal cointegration even though the sizes of
them are not extreme as those in non-seasonal cointegration. The ML estima-
tor(MLE) is compared with the two-step estimator in a small Monte Carlo simula-
tion study and we find that the two-step estimator can be an attractive alternative
to the MLE, especially, in a small sample.
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1. Introduction

In cointegration analysis, the reduced-rank(RR) maximum likelihood(ML) approach
has been the prevalent method for estimating the cointegration parameters in vector
error correction models; see Johansen (1996) for the ML approach in non-seasonal coin-
tegration and Lee (1992), Ahn and Reinsel (1994) and Johansen and Schaumburg (1999)
for that in seasonal cointegration. Its popularity is occurred by its sound theoretical
basis, computational simplicity and superior performance relative to some other esti-
mators (Briiggemann and Liitkepohl, 2005: henceforth, BL). However, potentially poor
small-sample performances of the ML estimator(MLE) were pointed out by several earlier
works, especially, in non-seasonal cointegration analysis.

Among other, Phillips (1994) showed that finite-sample moments of the MLE do not
exist and Gonzalo (1994) and Hansen et al. (1998) found that the small-sample properties
of the MLE are not well approximated by its asymptotic distribution and in particular,
that the MLE produces occasional outliers which are far away from the true parameter
values. In this respect, BL considered a simple feasible two-step (or generalized least

squares) estimator which does not produce the kind of outlying estimates observed for
the MLE.
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In seasonal cointegration analysis, the two-step estimator has not attracted much
attention from applied researchers in the past because it is at best used as an initial
estimator for RR ML estimation by Ahn and Reinsel (1994). In this paper, we consider a
feasible two-step estimator for seasonal cointegration as the extension of BL.. We compare
this with the MLE for seasonal cointegration and find through Monte Carlo simulations
that it can also be an attractive alternative to the MLE in that it does not produce the
outlying estimates.

The paper is structured as follows. In section 2, the model is presented and estimation
procedures for seasonal cointegration are described. In section 3, Monte Carlo simulations
are conducted for comparison of the MLE and the two-step estimator. Conclusions are
drawn in section 4.

2. The Model and Estimations of Seasonal Cointegration

2.1. The model

We consider a vector autoregressive (VAR) model for an n-dimensional process X;
satisfying

D _
H(L)Xt - In - ZH]LJ Xt = (I)Dt + €ty (21)
7=1

where £; are #id. N,(0,9Q), D; is a deterministic term that may contain a constant, a
linear term or seasonal dummies and I,, denotes an n X n identity matrix. We assume
that the initial values Xp,...,X_,1; are fixed and that the roots of the determinant
III(z)| = 0 are on or outside the unit circle.

For brevity, it is assumed that X; are observed on a quarterly basis and ®D; = 0.
Models with deterministic terms, ®D; # 0, can be easily implemented as in Johansen
and Schaumburg (1999) and Cubadda (2001). Then, as in Ahn and Reinsel (1994), if
the series are cointegrated of order (1, 1) at frequencies 0, 7, 7/2 and 37/2, model (2.1)
can be rewritten in the following error correction model{ECM):

I*(L)Z; = A1 B U1 + AsBoVi_q + (AsBy + A4 B3)W;_4
+(A4Bs — A3B3)W; o + &, (2.2)

where Z, = (1-LYX,, U, = (1+ L)1+ L)X, V; = 1-L)QA+LH X, W, = (1-L?) X,
1I*(L) is a matrix polynomial, A; and B; are n x r; and r; X n matrices, respectively,
with rank equal tor; for j = 1,...,4 and r3 = r4. For a unique parameterization, we also
need to normalize the B,’s such that B, = [I,.,, By|, B2 = [I,, B2, Bs = [I,,, B3| and
By = [O,,, Byo] where Oy, is a r; X 7; matrix of zeros and Bjg is a matrix of unknown
parameters. Note that ry, o and r3 (r4) denote the cointegrating(CI) rank at frequencies
0, m and 7/2 (37/2), respectively and B U, B2V;, (B3 + ByL)W; and (By — B3 L)W, are
stationary processes, i.e., existing CI relationships (vectors).
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2.2. Reduced-rank maximum likelihood estimation

For given CI ranks r;’s, several types of RR ML estimation procedures have been
considered by Lee (1992), Ahn and Reinsel (1994), Johansen and Schaumburg (1999),
Cubadda (2001) and Cubadda and Omtzigt (2005), among others. Here, we adopt the ML
procedure using the complex ECM of Cubadda (2001) since it can be easily implemented
without using the iterative and switching procedures of the other earlier works.

Model (2.1) can be rewritten as the complex ECM:

X = 01 X + B X2, + ey X + T(L)X2) + e, (2.3)

where X{” = (1 -~ L)(1 + L)(1 +iL)Xs, XV = (1 + L)1 + L)X /{2(1 + 1)}, X7 =

(1-L)Y(1+iL)X,/{2(1=1)}, X\*) = (1—-L?)X,/(24), @, and B, are complex-valued nx 7,
matrices with rank equal to r,,, for m = 1,2, 3, 3* denotes the conjugate transpose of 3,
and I'(L) is a matrix polynomial. ECM (2.3) is related to {2.2) through the relationships:

B =real(3t), By =real(53), Bs =real(8%), B, =imag(3%),

A, = rea,l(&l), A, — _1'68,1(652), Ay — real(ds ), A, — ima,g(c'izg)’
4 4 2 2
A (Dy—-1 = (L) 5(1) —
where B = Bm(Bm’) ", Gm = mfBm’, Bm’ denotes the first ., rows of 3, for m =

1,2,3 and real(x) and imag(z) denote the real and the imaginary part of x, respectively.

Note that :
b = {1 52 (59) .

where ﬁg) denotes the last n — r,,, rows of 3,,.

The MLE can be computed with the squared partial canonical correlations(SPCCs)
between Xt(o) and Xff”l) for m = 1,2,3, adjusted for the other regressors from ECM
(2.3). More specifically, from the regression of X, ) and X; (m) on the other regressors,

we obtain residuals R( ) and R( ™) , respectively. We then obtam the SPCCs by Solvmg
the eigenvalue problem

where §; ; = Zt le )R(J) for 1,7 = 0, m and m = 1,2,3. For the ordered eigen-

values (SPCCs) A m > > A, m and correspondmg matrix of eigenvectors Vi, =
(D1,m5« + + » Unm ), normalized such that V> Sm,mV = J,,, unnormalized estimators of 3,
and «,, are given by ﬁ'm = (01.my- -+ Ur,,.m) and &, = So.m Bm where 7, is the given

CI rank. Therefore, post—multiplying by the inverse of the first 7, rows of B,, and
conjugate-transposing the resulting matrix give the following normalized MLEs for CI
vectors, Bjg’s, from the relationships between ECMs (2.2) and (2.3):

~ N -1 .
B0 = real ((,83(-1)*) 63(_2)*) , form=1,2,3
A " -1
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where B%) and B,S,f ) denotes the first rm and last n—r,, rows of Bm, respectively. Since we
focus on the estimation of the CI vectors which are non-stationary parameters in model
(2.2), details about estimation of A;’s, which are stationary parameters, are omitted here
and hereafter. | |

In non-seasonal cointegration analysis, the MLE for CI vectors has no finite-sample
moments (see, Phillips, 1994). This property is a consequence of the fact that it is
effectively obtained by a ratio of two estimators which are needed for the normalization.
In order to avoid a ratio of this type, BL suggest a feasible two-step (or generalized least
squares) estimator. In seasonal cointegration, the MLE for seasonal CI vectors is still
obtained by the ratio of two estimators using equation (2.4). Therefore, it is interesting to
consider an extension of the feasible two-step estimator to seasonal cointegration, which
is described in the next section.

2.3. A feasible two-step estimation

Ahn and Reinsel (1994) proposed an estimator for seasonal cointegration which can

be viewed as a feasible two-step estimator and used it as an initial estimator for RR
MLE. Define

A;B; = |A;, A;Bjol, for j = 1,2,
C; = ¢ A3By+ AyBs = [A4, A3By + AyBso], for 7 =3,
AyBy — A3Bs = [—A3, —A3B3g + AyBy), forj=4

and let IT*(L) and C; be the ordinary least squares(OLS) estimator of II*(L) and Cj,
respectwely, in model (2.2). Then, we can obtain Ay =0, Ay = Coo, A = —Cy4 and
Ay = C\3 as the OLS estimators for A1, Ao, Az and A4, respectively, where o ; is the
matrix with the first 7; columns of C; for j = 1, 2, 3, 4.

Using these estimators, calculate Z; and P, as follows:

p—4
Zy = 2y — AU — AoVigor — AdWieo1 + AsWi o — ZH;Zt—j:

=1

pt = [1‘11 & Uét—la Az & Vz;t—la /-Ll & Wét_l—"fi?, ® Wét—2a AB 29 Wét_l +12i4 & Wzlt—-2} ’

where Uy, Vi; and Wy, are the first r1, 7o and r3 components of U;, V; and W, respec-
tively, Ug, Vo, and Wy, are the last n — r;, n — ro and n — r3 components of U;, V;
and W,, respectively and ® denotes the Kronecker product. Then, the feasible two-step
estimator for seasonal CI vectors can be given by

T
6:(2?{(2*&) (ZP’ 1Zt), (2.5)
i=1

where §) is the usual residual covariance matrix from the OLS procedure, b = (b7, b, b5,

by)" and b; = vec(Bj,) for j = 1,...,4, where vec(:) vectorizes a matrix columnw1se
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from left to right. This two-step estimator is asymptotically equivalent to the RR MLE
(see, Ahn and Reinsel, 1994). However, the finite-sample properties of them may be very
different as we will see in the following Monte Carlo simulations.

3. Monte Carlo Experiments

Monte Carlo simulations are conducted to compare finite-sample properties of the
feasible two-step estimator with those of the MLE in seasonal cointegration by using
three data generating processes(DGPs).

In each DGP, we generate 10,000 replications of the sample series with 7' = 30, 50, 100
and 200 and apply the ML and two-step estimations to obtain estimates of the cointegra-
tion parameters by using a correctly specified model that uses the true values for seasonal
CI ranks and VAR order, p. Initial values are set to zero and the first 50 observations
are truncated in order to eliminate the impact of zero start-up values.

Note that, in earlier literature for (seasonal) cointegration, Monte Carlo simulations
have been conducted under various types of covariance matrices of the error term in
order to check if inference (estimation) procedures are sensitive to the degree and sign
of correlation among innovations. However, the results under such simulations are not
reported in the paper because it is observed that they did not make any changes on
relative performances between the ML and the two-step estimators.

3.1. DGP 1

For the first experiment, the DGP considered is identical to the one used in Cubadda

(2001):
00 0 0
1+ IAX, = X._ X _ . 3.1
(1+ L7)X; (710) t1+(0“’)/1) t—2 + & (3.1)

This model is seasonally cointegrated at the roots £i with a polynomial CI vector
{(1,0)'+(0, —1)'L} and CI rank of one, if —2 < v; < 0. As in Cubadda (2001) we choose
71 = —0.2 where the roots of the characteristic equation |II{z)| = 0 are {£i, +£1.1180¢}
and for the variance of ¢, = (e14, €2+)’ we choose Var(e,:) = Var(eo;) = 1 and
Cov(ey ¢, €2¢) = 0.5. Model (3.1) has the following ECM:

(1 + LQ)Xt = A4(Bg + B4L)Xt_1 + &4,
where Ay = (A4, Asg)’, Bs = (1, B3g)' and By = (0, By)’ with A1y =0, Aoy =7 =
—0.2, B3gp = 0 and Byy = —1. Note that the first elements in By and B4 are not
parameters to be estimated but are normalizing constants.

3.2. DGP 11

For the second experiment, the DGP considered is the one used in Ahn and Reinsel
(1994), that is

(1—LYX, = A1B1Ui1 + AaBoVi_y + AyBaWi_ 1 — A3 BoWy_o + ey, (3.2)
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where Al — (Au, A21), = (06,06)’, Az = (A12, Agz)' = (—0.4, 0.6)’, A3 = (Alg, A23)’
== (06, —0.6)’, A4 = (A14, A24)’ = (04, -—0.8)’, Bl = '(1, BIO)’ = (1, —0.7)’, B2 =
(1, By)' = (1,0.4)', Var(e1:) = Var(ez:) = 1 and Cov(e1 ¢, €2,+) = 0.5. The model is
contemporaneously cointegrated at the roots +7 and —1 with a CI vector B, = (1, 0.4)’
and also (non-seasonally) cointegrated at the root 1 with a CI vector By = (1, —0.7)".
We note that the first components in B; and B, are normalizing constants and the roots

of characteristic equation are {1, i, —1.336, 1.344, 0.117 £ 1.494:}.

3.3. DGP 111

The third DGP is an extension of DGP I to 3-dimensional process:

000 00 0
(1+L)X, = 000 | X,1+[00 0 |Xio+e, (3.3)
v2 00 0 v2 —

where ¢, b N3(0,9). The parameters are set at the following values:

O'% pPo1 Ppo102
v =—0.2 and Q= por 1 pos ,

PO109 PO 0'%
where (02,03) = (0.5, 2) and p = 0.5. Model (3.3) has the following ECM:
(1+ L)X, = Ay(Bs + B4L) X;_1 + &4,

where A4 = (A14, A24, A34)’, B3 = (1, B30,1; Bgo}g)’ and B4 — (0, B40}1, B40’2), with
Ay =0, Ay =0, A3y = 72 = —0.2, B3g1 =0, B3yp2 =0, Byo,1 =1 and By 2 = —1.
We note that X; is seasonally cointegrated at the roots +i with a polynomial CI vector
{(1, 0, 0)’ + (0, 1, —1)’L} and CI rank of one.

3.4. Results of Monte Carlo simulations

We compare different aspects of estimation precision of the two estimators on the
basis of various criteria including standard measures such as the mean bias and the
mean squared error(MSE). The criteria include other characteristics of the empirical
distribution of estimators: the median bias and the sample dispersion, which is measured
by the interquartile range IQR.;, = q75 — q25 (g; is the it quantile of the empirical
distribution). As pointed out by Gonzalo (1994), these are more fair and effective criteria
for estimators that do not have the finite-sample.

The results for DGP I are summarized in Table 3.1. We observe that extremely
outlying MLEs do not exist in terms of MSE, as in non-seasonal cointegration by BL.
However, the two-step estimator is superior to MLE in terms of MSE and IQR;, for all
considered sample sizes. Especially, this phenomenon is more distinguished in terms of
MSE for T' = 30 and 50. In terms of bias in mean or in median, superiority between two
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Table 3.1: Comparison of performances of the ML and two-step estimators for CI vectors

in DGP I (10,000 replications)

Bag Bug
T MLE Two-Step MLE Two-Step
Bias in mean 0.0338 0.0462 0.0162 —0.0114
20 Bias in median 0.0340 (0.0445 0.0060 —0.0053
MSE 0.7483 0.0792 0.2001 0.0806
IQRs, 0.2815 0.2638 0.2753 0.2662
Bias in mean 0.0167 0.0276 0.0160 —0.0062
=0 Bias in median 0.0181 0.0257 0.0044 —0.0045
MSE 0.0800 0.0364 0.5269 0.0361
IQR+, 0.1943 0.1870 0.1943 0.1880
Bias in mean 0.0042 0.0109 0.0085 —0.0018
100 Bias in median 0.0057 0.0109 0.0039 —0.0009
MSE 0.0144 0.0111 0.0123 0.0110
IQR:, 0.1083 0.1062 0.1069 0.1056
Bias in mean 0.0022 0.0044 0.0027 —0.0004
900 Bias in median 0.0023 0.0037 0.0015 0.0002
- MSE 0.0030 0.0030 0.0030 0.0030
IQR, 0.0587 0.0584 0.0583 0.0585

estimators depends on Bsyo and By and it is remarkable that the MLE shows outlying
estimates in sample size T' = 200 where it has bias in mean (bias in median) about 7.62
times (7 times) larger than the corresponding two-step estimator.

In Table 3.2, we observe similar results to those of DGP I. The newly observed points
are that, for sample sizes, T' = 30, 50 and 100, the two-step estimator dominates the
MLE independently of Bj() for 5 = 1,...,4, in terms of almost all considered perfor-
mance criteria and the MLE shows extremely outlying estimates comparatively to the
corresponding two-step estimator, especially, in sample size T = 30. In T = 200, the
two-step estimator shows an outlying estimate which is about 44 times larger than the
MLE in terms of bias in median. It is interesting that we can not observe extremely
outlying MLE for (non-seasonal) CI vectors at the unit root 1, as in BL.

In Table 3.3, we can also observe similar results to those of DGPs I and II but the
remarkable point is that, in terms of biases in mean and median, the MLE dominates
the two-step estimator in cases of sample sizes T = 50, 100 and 200, independently of
Big}j fori =3, 4and j =1,2.

In conclusion, the results indicate that the RR MLE for seasonal cointegration may
still produce rather outlying estimates of the cointegration parameters, especially, in

terms of MSE and IQR;,, even if the outlying sizes are not large as those in non-seasonal
cointegration analysis.
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Table 3.2: Comparison of performances (x1072) of the ML and two-step estimators for
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CI vectors in DGP II (10,000 replications)

Big B
T MLE Two-Step MLE Two-Step
Bias in mean 6.0283 0.0034 —0.5386 —0.0421
30 Bias in median 0.4094 —0.0099 —0.1119 —0.0156
MSE 2418.7145 0.1019 0.8796 0.0269
IQR;, 5.3373 2.0580 2.8202 1.1001
Bias in mean 0.3607 0.0138 —0.0848 —0.0146
50 Bias in median 0.0991 0.0110 —0.0312 —0.0040
MSE 0.1152 0.0275 0.0224 0.0076
IQR;, 2.3134 1.2823 1.2814 0.6787
Bias in mean 0.0897 0.0123 —0.0198 —0.0078
100 Bias in median 0.0295 0.0019 —0.0055 —0.0069
MSE 0.0121 0.0063 0.0032 0.0018
IQRx, 0.9821 0.6942 0.5318 0.3671
Bias in mean 0.0160 0.0022 —0.0053 —0.0032
900 Bias in median 0.0117 0.0020 —0.0030 —0.0021
MSE 0.0022 0.0016 0.0006 0.0005
IQR, 0.4518 0.3785 0.2401 0.1943
égo - -940
T MLE Two-Step MLE Two-Step
Bias in mean —0.0704 0.0262 0.1655 (.0086
30 Bias in median 0.0051 0.0292 0.0682 0.0009
MSE 0.0804 0.0155 0.0857 0.0162
IQRs, 2.8906 1.1622 2.9445 1.1508
Bias in mean —0.0318 0.0048 0.0661 0.0061
=0 Bias in median —0.0187 0.0107 0.0362 0.0063
MSE 0.0171 0.0054 0.0171 0.0057
IQR, 1.3753 0.7334 1.3986 0.7570
Bias in mean —0.0059 (0.0038 0.0145 0.0026
100 Bias in median —0.0061 0.0023 0.0036 0.0042
MSE 0.0030 0.0015 0.0029 0.0016
IQR-, 0.5968 0.4139 0.6077 0.4126
Bias in mean —0.0030 0.0041 0.0044 0.0049
900 Bias in median —0.0023 0.0024 0.0001 0.0044
MSE 0.0006 0.0004 0.0006 0.0004
IQR;, 0.2785 0.2234 0.2786 0.2251
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Table 3.3: Comparison of performances of the ML and two-step estimators for CI vectors
in DGP III (10,000 replications)

é30,1 é30,2
T MLE Two-Step MLE Two-Step
Bias in mean 0.1193 0.1423 0.1226 0.1071
20 Bias in median 0.1233 0.1511 0.1095 0.1030
MSE 2.2950 0.3249 1.4098 0.1681
IQR5, 0.8544 0.6179 0.6746 0.4455
Bias in mean 0.0682 0.1226 0.0782 0.0815
50 Bias in median 0.0800 0.1207 0.0693 0.0776
MSE 1.9564 0.2285 1.5576 0.1246
IQR;, 0.7804 0.5411 0.6410 0.4022
Bias in mean 0.0198 0.0776 0.0233 0.0459
09  Bias in median 0.0258 0.0702 0.0254 0.0446
MSE 0.6707 0.1161 0.5232 0.0688
IQR5, 0.5160 0.3909 0.4258 0.3001
Bias in mean —(.0081 0.0290 0.0078 0.0237
900 Bias in median 0.0013 0.0247 0.0106 0.0228
MSE 0.0813 0.0399 0.0583 0.0258
IQR:, (0.2634 0.2344 0.2149 0.1853
340,1 B40,2
T MLE Two-Step MLE Two-Step
Bias in mean 0.6100 0.6726 —0.5279 —0.5954
30 Bias in median 0.6147 0.6815 —0.5458 —0.6113
MSE 2.9158 0.7799 2.0315 0.5423
IQR-, 0.9131 0.6636 0.7430 0.5264
Bias in mean 0.4023 0.5329 —0.3365 —0.4774
=0 Bias in median 0.3934 0.5276 —0.3380 ~0.4786
MSE 3.5984 0.5399 1.9904 0.3832
QR 0.8091 0.6161 0.6744 0.4992
Bias in mean 0.0974 0.3248 —0.0769 —0.2907
100 Bias in median 0.1192 0.3051 —0.1009 —0.2723
MSE 0.5786 0.2342 0.4503 0.1694
IQR, 0.5060 0.4497 0.4143 0.3775
" Bias in mean —0.0033 0.1416 0.0055 —0.1268
) 00 Bias in median 0.0207 0.1241 —0.0188  —0.1122
MSE 0.1269 0.0664 0.0857 (0.0478
IQR:, 0.2553 0.2657 0.2133 0.2216
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4. Conclusions

This paper considers a feasible two-step estimator for seasonal cointegration. It is
shown that the RR MLE for seasonal cointegration can produce occasional outliers,
similarly to that for non-seasonal cointegration. Through a small Monte Carlo simulation,
it is found that the two-step estimation can be an attractive alternative to the ML
estimation, especially, in a small sample.
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