Communications of the Korean Statistical Society Vol. 15, No. 3, 2008, pp. 429440

Noninformative Priors for the Coefficient of Variation
in Two Inverse Gaussian Distributions

Sang Gil Kang?, Dal Ho Kim?, Woo Dong Lee?

Abstract

In this paper, we develop the noninformative priors when the parameter of
interest is the common coeflicient of variation in two inverse Gaussian distributions.
We want to develop the first and second order probability matching priors. But we
prove that the second order probability matching prior does not exist. It turns out
that the one-at-a-time and two group reference priors satisfy the first order matching
criterion but Jeffreys’ prior does not. The Bayesian credible intervals based on the
one-at-a-time reference prior meet the frequentist target coverage probabilities much
better than that of Jeffreys’ prior. Some simulations are given.

Keywords: Coeflicient of variation; inverse Gaussian distribution; probability matching
prior; reference prior.

1. Introduction

The inverse Gaussian distribution is a very versatile and flexible probabilistic model
for positive right-skewed data and has potentially useful applications in a wide variety
of fields such as biology, economics, reliability theory, life testing and social sciences as
discussed in Folks and Chhikara (1979), Chhikara and Folks (1989), Whitmore (1979), Se-
shadri (1999) and Mudholkar and Natarajan (2002). Tweedie (1957a, 1957b) established
many important statistical properties of the inverse Gaussian distribution and discussed
the similarity between statistical methods based on the inverse Gaussian distribution and

those based on the normal theory. The inverse Gaussian distribution IG(u, A) is given
by

A s Mz — p)?
=4/ — — 0 1.1
i d) =y g e {-2EZEEL as0 (11)

where 1 > 0 is the mean parameter and A > 0 is the scale parameter.

Consider that Xi,...,X,,, are independent and identically distributed random vari-
ables according to the inverse Gaussian IG(u1, py /v?) and Yi,..., Y,, are independent
and identically distributed random variables according to the IG(uso, u2/v?), where p
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and ps are the mean parameters and v is the common coefficient of variation. Then the
likelihood function of p1, uo and v given x = (z1,...,Z,,) and y = (y1,..., Yn,) 1S
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where 1 > 0, uo > 0 and v > 0. The parameter of interest is §; = -y, the common
coefficient of variation.

The present paper focuses on developing noninformative priors for ;. We consider
Bayesian priors such that the resulting credible intervals for 6; have coverage probabilities
equivalent to their frequentist counterparts. Although this matching can be justified only
asymptotically, our simulation results indicate that this is indeed achieved for small or
moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such priors
revived with the work of Stein (1985) and Tibshirani (1989). Among others, we may
cite the work of Mukerjee and Dey (1993), DiCiccio and Stern (1994), Datta and Ghosh
(1995a), Datta and Ghosh (1995b, 1996), Mukerjee and Ghosh (1997).

On the other hand, Ghosh and Mukerjee (1992) and Berger and Bernardo (1989,
1992) extended Bernardo’s (1979) reference prior approach, giving a general algorithm
to derive a reference prior by splitting the parameters into several groups according to
their order of inferential importance. This approach is very successful in various practical
problems. Quite often reference priors satisfy the matching criterion.

The coeflicient of variation has been widely used as a measure of precision and repeata-
bility of data in medical studies. For example, in toxicology, the coefficient of variation
can be used as a measure of precision within and between laboratories, or among repli-
cates for each treatment concentration. For the coefficient of variation in single inverse
Gaussian distribution, Hsieh (1990) derived the likelihood ratio test and obtained the
confidence bounds. Choi and Kim (2004) derived the likelihood ratio, Lagrange Multi-
plier and Wald tests for testing of the homogeneity of coeflicients of variation in inverse
Gaussian populations. They concluded that the likelihood ratio test is most powerful in
the case of small to moderate samples in their simulation results. However there is a little
work in this problem from the viewpoint of Bayesian framework. It is well known that the
role of the objective priors such as the probability matching prior or the reference prior
in the presence of nuisance parameters is very important in Bayesian inference. Kang
et al. (2004) developed the noninformative priors for the ratio of parameters in inverse
Gaussian distribution. They showed that the second order matching prior does not exist
and the one-at-a-time reference prior satisfying the first order matching criterion meets
very well the target coverage probabilities than Jeffreys’ prior.

The outline of the remaining sections is as follows. In section 2, we consider the
first order and second order probability matching priors for the common coefficient of
variation in two inverse Gaussian distributions. We reveal that the second order matching
prior does not exist. It turns out that the one-at-a-time and two group reference priors
satisfy the first order matching criterion but Jeffreys’ prior does not. We provide that the
propriety of the posterior distribution for the first order matching prior and the reference
priors in section 3. In section 4, simulated frequentist coverage probabilities under the
‘proposed priors are given.
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2. The Noninformative Priors

2.1. The probability matching priors

For a prior 7, let 8;~%*(m; X) denote the (1 — «)!" percentile of the posterior distri-
bution of 64, that is,

P[0y <0 (m X)|X] = 1 - (2.1)
where @ = (61,...,0;)! and 6, is the parameter of interest. We want to find priors 7 for
which

Pl6: < 61-(mX)l6] = 1 — a + o(n™), (2.2)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.2) are called matching priors.
If w = 1/2, then 7 is referred to as a first order matching prior, while if u = 1, 7 is
referred to as a second order matching prior.

In order to find such matching priors 7, let

01 =, 02 =p1(2+79%)7" and O3 = pa(24+4%) 7

With this parameterization, the likelihood function of (6y, 82, 83) for the model (1.2) is
given by

n—}—n

L6182, 0s]x,y) o« 6712 7 g 7 (2+92)

(2.3
X €Xp Z 2620, 2+92 )z Z 29293 2—1—92)% (2.3)

Based on the likelihood function (2.3), the Fisher information matrix is given by

[ 4(ny + na) \
0 0
0%(2 + 0?) ;
n1(2 —+ 91)
! 0 26202
\ 20103

From the above Fisher information matrix I, 8, is orthogonal to 6, and 65 in the sense of

Cox and Reid (1987). Following Tibshirani (1989), the class of the first order probability
matching prior is characterized by

73 (01, 02,03) o 07 (2 + 67)2d(62, 63), (2.4)

where d(03,03) > 0 is an arbitrary function differentiable in its arguments.
The class of first order probability matching prior given in (2.4) is so broad, so one

can narrow down this prior to the second order probability matching prior as given in
Mukerjee and Ghosh (1997).
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The second order probability matching prior is of the form (2.4) and also the function
d(-) must satisfy an additional differential equation (cf. (2.10) of Mukerjee and Ghosh
(1997}}, namely,

1 0 “‘% - 0 _% VU
"éd(92a 93)8_91 (111 Ll,l,l) + 1;2 5@; {Ill Llle d(92393)} — Oa (25)
where
I _ & dlog L\ ° _ 8(ny +n2)(8 4667 +3607)
= e ) [T werer
3 log L 4n,
L = F =
e ( 86266, ) (2 + 62)20,
03 log L 4no
L = K ==
s ( 862905 ) (2 + 62)265°
4(7?,1 -+ ’nz) 99 29%9% 33 29%9%
I = d I7= :
1 02(2 + 62) ni(2+62) n2(2 + 62)
Then (2.5) simplifies to
6 + 07 %) %,
Ld(0y,05) + ——{02d(65,05)} + —{03d(62,83)} = 0. (2.6)
8 00, 005

Note that the first term depends only on (61, 02,63) and the second and third only on
(62,65). Hence there can be no solution to (2.6) unless the first term is zero. Therefore
the second order matching prior does not exist.

2.2. The reference priors

Reference priors introduced by Bernardo (1979) and extended further by Berger and
Bernardo (1989, 1992) have become very popular over the years for the development of
noninformative priors. In this Section, we derive the reference priors for different groups
of ordering of (6;,02,03). Then due to the orthogonality of the parameters, following
Datta and Ghosh (1995b), choosing rectangular compacts for each #,, 6> and 65 when 6,
is the parameter of interest, the reference priors are given as follow.

If 8, is the parameter of interest, then the reference prior distributions for different
groups of ordering of (8, 0,,63) are:

Group ordering Reference prior
{(61,65,65)}, m1(01,62,85) oc 07°(2+67)20563
{61,(62,03)},{61,02,05},{01,03,05}, mo(61,02,05) o 0712+ 67)"765105 .

Remark 2.1 The one-at-a-time and two group reference priors 7o satisfy the first
order matching criterion but Jeffreys’ prior m; does not.

Notice that the matching prior (2.4) includes many different matching priors because
of the arbitrary selection of the function d. However all functions are not permissible in
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the construction of priors. For instance, we consider any function of the form 6565. If
a and b are positive integer, then the posterior distribution under function of the form
6305 is proper. But the condition of propriety in this form strongly depend on a and b.
Moreover there does not seem to be any improvement in the coverage probabilities with
this posterior distribution. So we have chosen d to be 8;'0;". The resulting prior is
given by

70 (0y,0,05) x 0712+ 62)" 3051051 (2.7)

Because of this, the matching prior is the one-at-a-time reference prior.

3. Implementation of the Bayesian Procedure

We investigate the propriety of posterior for general priors which include the reference
priors and the first order probability matching prior (2.7). We consider the class of priors

g (01,02,05) o 87205005 °(2 + 6%)2, (3.1)

where a,b,¢ > 0 and |d| > 0. The following theorem shows the propriety of posterior
under the prior (3.1).

Theorem 3.1 The posterior distribution of (61,82, 83) under the prior (3.1) is proper if
a—2d—1>0,n1 —2b+2>0and nyg —2¢+ 2 > 0.
Proof: Under the prior (3.1), the joint posterior for 81,6, and 3 given x and y is

S b

w(01,0,05x,y) o 67 TTeg T "0

{2 — 622+ 6D))° > {yi — 02+ 63))°
xeXp[ Z 20205 (2 + 67)x; Z 20903(2 + 6%)y; |

(2 4+ 63) 77+

1=1
Let 1 =7, 03 = p1(2+~%)~! and 03 = ps(2 + v?)~1. Then the posterior is given by

n1__p Ra2_
2.bzc_
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- (z; —M1)2 - (s —u2)2
— E — E : 3.2
% OXP { 2u1y%x; 22y Y; (3:2)
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For ~, we have the following facts:

(2 + 4%)bHetd=2 < ghtetd—2 for 0<y<landb+c+d—2>0,
(2 + y2)bretd=2 £ gbtetd=2 for0<y<landb+c+d—2 <0,
(2 4 A2)oretd=2 < J2(bterd=2)gbtetd=2  fr 1 «cy<oocand b+c+d—2>0,
(2 4 y2)oTetd=2 < gbretd=2 forl<y<ooandb+c+d—2<0.

Thus we only need to show that the following function is finite.

1 _p D2

(2, VX, y) o pg gty (et brerd=)

- (2 — 1) e (yi — p2)?
% E E . 3.3
% €xp { 201Y2x; 22y Y; (3:3)

1=1 1=1
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Integrating with respect to - in posterior (3.3), we have
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where sy = 3302 (1/2; — 1/2), 2 = 3700 @i/na, s = 3002 (/v — 1/89), ¥ = 2272, i/
and k=mny +na+a—2(b+c+d)+3,if k > 0. For (3.4), substituting t; = p; " and
o= ol

2 = 4 -, then
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1 <19 < 00,
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2
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(1, talx, y)durdus

k
‘ngtl(’ytg—l)Q 2

dtidt; < 00,

27 paty << 00

ifn1—2b+2>Oandn2—26+2>0. For0<t;<landl1l<iy < o0,
ool ’ no+a— 2(c+d) 1 nyta— 2(b+ar) 1
/ / ' (t1,t2|X,y)dp1dus / / ts
1 0

3 dt dto < o0,
ifng+a— 2(c+d)+1>0and ny —2c+ 2 > 0. This completes the proof.

27

X (tgsl
O

Theorem 3.2 The marginal posterior density of 8; under the prior (3.1) is given by

i mni % TL] %-
-1
T; xI.
ny — 2b+ 2 (; ) (; z )
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ﬂ(gl ,X, Y) X 9?1+n2+a 9 )




Noninformative Priors for the Coefficient of Variation in Two Inverse Gaussian Distributions 435

o % na %
) ) (E :y‘i) (E :yi_l)
xBesselK | 22— ¢ , = A ;
2 65

where BesselK|:, -] is the modified Bessel function of the second order.
Actually the normalizing constant for the marginal density of 8; requires one dimen-

sional integration. Therefore we can have the marginal posterior density of 8, and the
marginal moment of 6.

4. Numerical Studies and Discussion

We evaluate the frequentist coverage probability by investigating the credible interval
of the marginal posterior density of 6; under the noninformative prior 7 given in section 3
for several configurations (u1, u2, ) and (ny,n2). That is to say, the frequentist coverage
of a (1 — «) posterior quantile should be close to (1 — «). This is done numerically.
Tables 4.1, 4.2 and 4.3 give numerical values of the frequentist coverage probabilities
of 0.05 (0.95) posterior quantiles for the proposed priors. The computation of these
numerical values is based on the following algorithm for any fixed true (u1, uo,7) and
any prespecified probability a. Here « is 0.05 (0.95).

Let 07(a|X,Y) be the posterior a-quantile of 8; given X and Y. That is to say,
F(O7(o|X,Y)|X,Y) = a, where F(-|X,Y) is the marginal posterior distribution function
of 8. Then the frequentist coverage probability of this one sided credible interval of 8,
is

P(ulam,’r)(aﬁgl) — P(.ul,,uz,'r)(o <0 < 9?(05|X7Y))-

The estimated P, ,,, 4)(0;601) when o = 0.05(0.95) is shown in Tables 4.1, 4.2 and 4.3.
In particular, for fixed (i1, p2,7y), we take 10,000 independent random samples of X and
Y from the model (1.2). For the cases presented in Tables 4.1, 4.2 and 4.3, we see that
the one-at-a-time reference prior m» meets very well the target coverage probabilities for
small values of n; and n,. Also the results of tables are not much sensitive to the change
of the values of (u1, u2) under small values of v. Thus we can recommend to use the
one-at-a-time reference prior when using the matching criterion. Note that Jeffreys’ prior
does not satisfy the first order matching criterion.

It appears that when ~ is large (the case of §; = 10), the values of the freqentist
coverage probabilities are far from target probabilities. The poor performance of all
the priors for certain regions of the parameter space is not very surprising. Gleser and
Hwang (1987, Theorem 1) show that based on any sample of arbitrary but fixed size,
any confidence interval for 8 of finite expected length has coverage probability equal to
zero. In our case, this poor performance happens when 6, is large, that is, the case that
the means are smaller than the standard deviations.
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Table 4.1: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for 6;

Y Hi1 175, n T2 m m2

01 01 01 5 5 0.018  (0.865)  0.050  (0.952)
5 10 | 0.024  (0.885)  0.049  (0.949)
10 10 | 0.025  (0.903)  0.049  (0.954)
10 15 | 0.029  (0.906)  0.051  (0.950)

1 5 5 0.018 (0.861 0.049  (0.952)
5 10 0.023 (0.885 0.053 (0.950)
10 10 0.028 (0.901) 0.052
10 15 0.027 (0.913) 0.046

10 5 5 0.021  (0.860)  0.051
5 10 | 0.024  (0.892 0.051

10 15 0.027 0.049

0.049
0.884)  0.046

(
(
(0.950)
) (0.950)
10 10 | 0.027  (0.901)  0.052  (0.948)
) (0.950)
1 0.1 5 5 0.018 ) (
5 10 | 0.021 (
(

10 10 0.025 0.050

0.048  (0.950

1 o 5! 0.018

S 10 0.024

(
(
(
(
10 15 | 0025  (0.910
(
( 0.051  (0.951
(

)
)
0.047  (0.953)
)
)

10 10 0.024
10 15 0.027 (0.911

0.046  (0.947
0.049

10 5 5 0.020

5 10 | 0.025  (0.892 0.052
(
(

0.051

(
0.050  (0.953
(
10 10 | 0.026 (

10 15 0.027 0.050 (0.946

10 0.1 o 5 0.019 (0.867) 0.048 (0.952

10 10 | 0028  (0.904 0.049  (0.952

1 5 5 0.020  (0.863 0.050  (0.949
5 10 | 0.025  (0.888
10 10 | 0026  (0.907
10 15 | 0029  (0.905

0.055  (0.949
0.051  (0.953
0.054  (0.949

10 5 5 0.020  (0.862 0.051
5 10 | 0.023  (0.891
10 10 | 0.026  (0.900

10 15 0.027 (0.912

(
0.052  (
0.049  (0.953

(

)

)

)

)

)

)

)

)

10 15 | 0.027  (0.909 0.047  (0.951)
)

)

)

)

)

)

)

0.050 )

)
)
)
)
)
)
)
)
)
)
)
5 10 | 0023  (0.882)  0.050  (0.946
)
)
)
)
)
)
)
)
)
)
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Table 4.2: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for 6;

Y 231 2 n na T 2

1 0.1 0.1 5) 5] 0.023 (0.882) 0.051 (0.954
5) 10 0.029 (0.896) 0.050 (0.949
10 10 0.032 (0.913) 0.0561 (0.954

)

)

)

10 15 | 0.032  (0.918)  0.048  (0.955)

1 5 5 0.025  (0.885)  0.053  (0.957)
5 10 | 0030  (0.903)  0.052  (0.955)

10 10 | 0.031  (0.909)  0.056  (0.952)

10 15 | 0030  (0.913)  0.050  (0.950)

10 5 5 0.022  (0.881)  0.048  (0.956)
5 10 | 0029  (0.900)  0.049  (0.952)

10 10 | 0031  (0.910)  0.052  (0.952)

10 15 | 0032  (0.915)  0.051  (0.953)

1 0.1 5 5 0.024  (0.882)  0.050  (0.956)
5 10 | 0029  (0.905) 0049  (0.955)

10 10 | 0.030  (0.908)  0.052  (0.952)

10 15 | 0030  (0.916)  0.048  (0.952)

1 5 5 0.025  (0.880)  0.051  (0.955)
5 10 | 0020  (0.903)  0.050  (0.953)
10 10 | 0033  (0.909) 0054  (0.951)
10 15 | 0033  (0.917)  0.052  (0.953)
10 5 5 0.025  (0.879)  0.053  (0.955
5 10 | 0.033  (0.900)  0.055  (0.954
10 10 | 0032  (0.914) 0053  (0.954
10 15 | 0.029 0.916)  0.049  (0.952

)

)

)

(
10 0.1 5 5 0.026  ( 0.052  (0.956
5 10 | 0028  ( 0.052  (0.956
10 10 | 0.029  (0.910 0.050  (0.951
10 15 | 0.031  (0.922)  0.051  (0.955
1 5 5 0.026  (

(

(

0.881)  0.053  (0.954
5 10 | 0.030 0.898)  0.054  (0.950
10 10 | 0.032 0.907)  0.051  (0.950

)
)
)
10 15 | 0032  (0913)  0.050  (0.950)
)
)
)
)

10 5 5 0.025  (0.876)  0.049  (0.951
5 10 | 0030  (0.894)  0.055  (0.948
10 10 | 0033  (0.907)  0.054  (0.948
10 15 | 0.031 (0.913)

0.050  (0.949
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Table 4.3: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for 6,

Y M1 M2 (5] T2 (5 ()

10 0.1 0.1 5 5 0.001 (0.846) 0.001 (0.910)
5 10 0.004 (0.897) 0.004 (0.932
10 10 0.006 (0.911) 0.006 (0.936
10 15 0.007 (0.930 0.007 (0.949

1 5 5 0.002  (0.850 0.002  (0.906
| 5 10 | 0.004  (0.892 0.004  (0.927
0.005  (0.935
0.006  (0.947

10 10 | 0.005  (0.910
10 15 | 0.006  (0.927

10 5 5 0.002  (0.851
10 | 0004  (

10 10 | 0.006  (0.914

10 15 | 0.007  (

0.002  (0.909
0.004  (0.922
0.006  (0.940
0.007  (0.943

1 0.1 5 5 0.003  (0.844
5 10 | 0.004  (0.893

0.003  (0.903
0.004  (0.928

10 10 | 0.006  (0.919 0.006  (0.941
10 15 | 0.007  (0.929 0.007  (0.946
] 5 5 0.002  (0.851 0.002  (0.909
5 10 | 0.003 0.894 0.004  (0.930
10 10 | 0.004 0.911 0.004 (0.
(0.947
10 5 5 0.002 0.844 0.003  (0.903
5 10 | 0.004 0.893 0.004  (0.928
10 10 | 0.005  (0.913 0.005  (0.939
10 15 | 0.008  (0.924 0.008  (0.942
10 0.1 5 5 0.002  (0.851 0.003  (0.910
5 10 | 0.003  (0.899 0.003  (0.932
10 10 | 0.005  (0.910 0.005  (0.936
10 15 | 0.007  (0.926 0.007  (0.943
1 5 5 0.002  (0.844 0.003  (0.902
5 10 | 0.003  (0.892 0.003  (0.929
10 10 | 0.005  (0.908 0.006  (0.933
10 15 | 0007  (0.926 0.007  (0.944
10 5 5 0.002  (0.847 0.002  (0.907

5 10 | 0.004 (0.892
10 10 0.006 (0.915
10 15 0.008 (0.929

0.004  (0.928
0.006  (0.939
0.008  (0.948

)
)
)
)
)
)
)
)
)
)
)
)
)
)
(0.894)
(0.911)
10 15 | 0.006  (0.926)  0.006
(0.844)
(0.893)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
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5. Conclusion

In the inverse Gaussian distributions, we have found the first order matching priors
and the reference priors for the common coefficient of variation. We have proved that
the second order matching prior does not exist. And the one-at-a-time reference prior
possess good frequentist properties in the sense that the coverage probabilities of credible
intervals for the common coeflicient of variation based on this prior match their frequen-
tist counterparts very closely even for small sample sizes. Also Jeffreys’ prior does not
satisfy the first order matching criterion. From our simulation results, we recommend to

use the one-at-a-time reference prior for the Bayesian inference of the common coefficient
of variation.
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