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Multiclass Classification via Least Squares Support
Vector Machine Regression'

Jooyong Shim"), Jongsig Bae?, Changha Hwang®

Abstract

In this paper we propose a new method for solving multiclass problem with least
squares support vector machine(LS-SVM) regression. This method implements one-
against-all scheme which is as accurate as any other approach. We also propose cross
validation(CV) method to select effectively the optimal values of hyper-parameters
which affect the performance of the proposed multiclass method. Experimental

results are then presented which indicate the performance of the proposed multiclass
method.

Keywords: Classification; cross validation; least squares support vector machine;
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1. Introduction

Many real applications consist of multiclass classification problems. Support Vector
Machine(SVM) was originally designed by Vapnik (1995) for binary classification. SVM is
gaining popularity due to many attractive features and promising empirical performance.
Extending it to multiclass problems is an ongoing research issue. There are commonly
two types of multiclass extensions for SVM. One is the composition type methods built
on a series of binary classification methods such as the one-against-one, one-against-all
and error correcting output codes (Allwein et al., 2000; Dietterich and Bakiri, 1995) and
the other is the single machine type methods, which attempt to construct a multiclass
classifier by solving a single optimization problem (Vapnik, 1998; Weston and Watkins,
1998; Lee et al., 2001). There is no substantial agreement on which method is the best
one for the multiclass problem (Rifkin and Klautau, 2004).

Despite of many successful application of SVM in classification and regression prob-
lem, training an SVM requires to solve a quadratic program(QP) problem. The QP is
to optimize a quadratic function over a polyhedron, defined by linear equations and/or
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inequalities, which is time memory expensive. Suykens and Vandewalle (1999a) proposed
the least squares SVM for binary classification, which is called LS-SVM. Its solution is
given by a linear equation system instead of a QP problem. LS-SVM keeps explicit
primal-dual formulations which has lots of advantages. Suykens and Vandewalle (1999b)
proposed an extension of LS-SVM to the multiclass case.

In this paper we propose a multiclass method using LS-SVM regression approach and
compare it with very popular multinomial logistic regression. This method implements
one-against-all scheme which is as accurate as any other approach. We also derive the
cross validation(CV) technique to select the hyper-parameters which affects the perfor-
mance of the proposed multiclass method. The rest of paper is organized as follows. In
Section 2 we present an overview of LS-SVM classification and regression and describe
their relationship. In Section 3 we propose a multiclass method using LS-SVM regres-
sion with a brief review on LS-SVM regression for binary classification. In Section 4 we
illustrate the generalized cross validation(GCV) function for selecting hyper-parameters.
In Section 5 we perform the numerical studies with real data sets. In Section 6 we give
the conclusions.

2. LS-SVM Classification and Regression

In this section we review some basic idea of LS-SVM classification and regression.
See for further details Suykens and Vandewalle (1999a, 1999b) and Suykens (2001). We
also show LS-SVM classification is actually equivalent to LS-SVM regression in binary
classification case.

2.1. LS-SVM classification

We first review some basic idea of LS-SVM classification. Suykens and Vandewalle
(1999a) modified Vapnik (1995)’s SVM classification formulation.

Given a training data set {x;,y;}?, with each input x; € R® and corresponding
binary class labels y; € {—1,+1}, we consider the following optimization problem in
primal weight space:

1 Tt
L(we, be, €) = Swlw, + % Y e, (2.1)
i=1

subject to equality constraints
Y [‘UJE‘I’(:BZ) + bc] =1—-e, t=1,...,1n, (22)

with @ : R? — RY a function which maps the input space into a higher dimensional
feature space of dimension d¢, weight vector w. € R%f in primal weight space, error
variables ¢; € R and bias term b.. To find minimizer of the objective function, we can
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construct the Lagrangian function as follows,

L(wC: bc; €, ac) — %'wzwc + % Z 8? - Z az’(yi [wii’(wz) + bc] -1+ 8@), (23)

i=1 1=1

where «;’s are the Lagrange multipliers. Then, the conditions for optimality are given
by |

oL e

8'1.06 =0 - W, = ;%%‘I’(mz)a

OL &

oL =0 — eiziai, 1=1,...,n,

86?;

8L t .

Oo; =0 — y ['wC@(m@)quc] ~14e=0 11=1,...,n. (2.4)

After eliminating e; and w., we could have the solution by the following linear equations

0 y?

b.1 [0 -
Yy n+%1 [&J_[l]’ (2:5)

where ¥y = (y1,...,y)%, 1 = (1,..., 1), ac = (a1,...,a,)" and 2 = {Qx} with
Q= vy ®(ar) ®(x;), k,0 = 1,...,n. From application of the Mercer’s condition
(Mercer, 1909) we can choose a kernel K (-,-) such that

K(a:k,:m) = (I’(.’Bk)t‘l)(ml), k‘,l = 1, 2 (26)

It is noted that & = Y KY for Y = diag{y} and K = {Kj;} with Ky = K(xx, x1).
By solving the linear equations (2.5), we obtain the solution

1 —1
Yt (YKY + ;;I) 1

1\l
o, = (YKY + —I) (1-by) and b.=

— (2.7)
Y 1
Finally, for a given & in dual space the nonlinear LS-SVM classifier becomes
J.(x) = sign [Z oy K(x;, )+ b.| . (2.8)
=1
In particular, for the given training data set, we obtain
y, = sign[KY a. + b.1]. (2.9)

~ We focus on the choice of an Gaussian kernel K(xy, x;) = exp(—|xx — x;}|%/0?) for the
sequel. Here the linear classifier can be regarded as the special case of the nonlinear
classifier by using identity feature mapping function, that is, ®{(x) = « which implies
the linear kernel such that K(xzg,x;) = xx;.



444 Jooyong Shim, Jongsig Bae, Changha Hwang

2.2. LS-SVM regression

The LS-SVM model for regression estimation has the following representation in
feature space | |

y(x) = w, ®(x) + by, (2.10)

where x € R%, y € R. The use of the nonlinear mapping ®(-) is similar to the classifier
case.

Given a training data set {x;,y;}?_, with each input x; € R? and corresponding
output y; € R, we consider the following optimization problem in primal weight space:

1 . T
L(wr, br,€) = swiw, + %Zef, (2.11)
=1

subject to equality constraints
y; = wi®(x;) +b.+e, i=1,...,n (2.12)

The cost function with squared error and regularization corresponds to a form of ridge
regression. To find minimizers of the objective function, we can construct the Lagrangian
function as follows:

1 n mn
Lw,, b e a.) = §wf,'wr + g- Ze? - Z a; (wl®(x;) + b, +e; — y;), (2.13)
=1 =1

where «;’s are the Lagrange multipliers. Then, the conditions for optimality are given
by

oL
ow,

=0 > w, = Zaii’(m%—),
=1

8L =0 — f:ai=0,
1=1

ob,.
oL 1
9e, ___:0 — e =—-a; 1=1,...,n,
oL |
S =0y — b, —w®(x;)—e;, i=1,...,n. (2.14)
After eliminating e; and w,, we could have the solution by the following linear equations
0 1t
b 0
1 T = : 1
v x| L) o) 219

By solving the linear equations (2.15), we obtain the solution

t 1 -
1 K+:Y“I Yy

t 1 -
1 (K+2I) 1

1 —1
xpr = (K + ;I) (y — brl) and b, =
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Finally, for a given « in dual space the nonlinear LS-SVM regression becomes
gr(®) = oK (xs,T) + by. (2.17)
i=1

In particular, for the given training data set, we obtain

g, = Ko, + b, 1. (2.18)

2.3. Equivalence of LS-SVM classification and regression

We now show LS-SVM classification is actually equivalent to LS-SVM regression for
binary classification case. To this end, we need to show b, = b,, a. = Y ;.

First, we are going to show b. = b,. The numerator of b, can be reexpressed as
follows:

1\ 1 !
y! (YKY + —1) 1 =y'Y™! (K+ —Y‘lY_l) Yy 1
¥ ¥
1 —1
= y'Y (K + —1) Y1
/‘)/

t 1 -

since Y =Y ', Y 'Y™! = I and Y1 = y for binary classification case. Similarly, we
can reexpress the denominator of b, as 1*(K + 1/vI)~!1. Thus, we finally show b, = b,..
We now show o, = Y «, as follows:

1\ !
aC:(YKY—F;I) (1 - bey)

—1
y~! (K + %Y‘lY_l) Y '(1-by)

1 —1
=Y (K + ;I) Y(1-b.y)

1\
= (K+;I) (y —b,1)
= Yo,.

Therefore, we obtain KYa, + b.1 = Ka, + b,1. That is, LS-SVM classification is
equivalent to LS-SVM regression for binary classification case.

3. One-Against-All Multiclass LS-SVM Regression

LS-SVM is originally designed for binary classification and the extension of LS-SVM
to the multiclass scenario is an ongoing research topic. The conventional way is to de-
compose the m-class problem into a series of two-class problems and construct several
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binary classifiers. The most widely used implementation is the one-against-all scheme,
which constructs m LS-SVM classifiers with the j* one separating class 7 from all the
remaining classes. In this section we propose one-against-all multiclass LS-SVM regres-
sion by using the fact that LS-SVM classification is equivalent to LS-SVM regression for
binary classification case.

Let the training data set be denoted by {;,y;}},; with each input vector x; € R
and the class label y; € {1,2,...,m}, where m is the number of classes. One-against-
all multiclass LS-SVM regression constructs m binary LS-SVM regressor, each of which
separates one class from all the rest. The j!* LS-SVM regressor is trained with all the
training examples of the 5" class with positive labels and all the others with negative
labels. Thus, for one-against-all multiclass LS-SVM regression, we transform y into nxm
matrix Y which consists of —1 and 1 such that Y;; = 1 and Y;; = —1 for j # k implies ith
example belongs to the j* class. We have m LS-SVM regressors for binary classification
with {x;, Y}, for j =1,...,m. Mathematically the 4¢P LS-SVM regressor

gi(x) =) ol K(zi, ) +V, (3.1)
i=1
can be solved from the following linear equation system
b 0 |
| = 3.2
o) =1, ) 2

where Y ; is the j¢" column of Y', b is a bias and o/ is a vector of Lagrange multipliers.
For Ky = [K(x1,x),..., K(x,, )], we can rewrite LS-SVM regressor (3.1) as

0 1t
1 K+%I

2]

a1 a2 0 |
= {1 K = g =hoY .; 3.3
[ 0] [021 Azz] [Y‘j ] [alz " KOAQQ]Y ? o 7 ( )

. - j b o 1
- Y

where a11,a12,a2; and Ay are the corresponding components of the inverse matrix of
the leftmost partitioned matrix in (3.2). Since hg does not depend on Y .;, we can write
for the given example x,

(gl (SC), 3}2(53): s agm(m)) = h'OY (34)

Therefore, once we have a;2 and As;, we do not need to solve m linear equations (3.2).
That is, we can obtain multiclass LS-SVM regression in one step.

At the classification phase, an example « is classified as in class j* whose ;- produces
the largest value |

-

7" = argmax ¢,(x). | (3.5)
§=1,2,...,m
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4. GCYV for the Proposed Multiclass LS-SVM Regression

Although each LS-SVM is tuned very well for the binary problem, there is no guar-
antee that they work well together for the entire multiclass problem. Thus, we propose
a CV technique to effectively select hyper-parameters v,0° in one step for multiclass
LS-SVM regression. The CV function can be defined as follows:

V) = 23 i — 70 (@)

n 4

1=1

where A is the set of hyper-parameters and ﬁ(rr:_i)(A) is the predicted value of Y,

1

obtained from the data without i** observation. Here m; is the column number of the

i" row of Y such that Yj,,, = 1, which implies that the i** observation belongs to the
" class. The CV can be rewritten as

1 T (_Z)
V(A = — E | N , 4.2
C (A) n i_l{ 1m; (A)} ( )
Since for each candidate of hyper-parameters, Y(" )()\) for i = 1,...,n should be evalu-

ated, selecting parameters using CV function is computationally formidable.
By leaving-out-one lemma (Kimeldorf and Wahba, 1971),

~ s

{Fim, = V5N } = K, = Vim,) = Vim, = V507 ()

~ s {m RN

we have
~(—1 }/zm - )/}tf,m >
Vim, = Vi) = =2 and Y, = hi¥ (4.3)
1 — 1M

where h; = [a12 + K; A2} and K; = [K(x1,x;),...,K(x,,2;)] for i = 1,...,n. Then
the CV function can be obtained as

()

CV(A)%}—i 1—Yzm¢()\) _l & ( zm% )) ’ (44)

n “ 8Y 'n,
i=1 imy
\ a}/zm% )
where h;; fori = 1,...,n, is the i** diagonal element of the hat matrix H = [k}, ... h}]".

By replacing h;;’s in (4.4) with their average tr{H)/n, the generalized cross valida-
tion(GCV) function can be then obtained as follows:

OMLE Y

{n —t(H)}

GCV(A) = (4.5)



448 Jooyong Shim, Jongsig Bae, Changha Hwang

Table 5.1: The misclassification rates for multiclass LS-SVM regression and multinomial
kernel logistic regression (standard deviation in parenthesis)

Iris Wine Glass
LSSVM 0.0154(0.0142) 0.0309(0.0193) 0.2255(0.0389)
KLogistic 0.0226(0.0155) 0.0388(0.0201) 0.1984(0.0301)

5. Numerical Studies

We illustrate the performance of the proposed procedure through three real data sets
available from UCI Machine Learning Depository (http://www.ics.uci.edu/mlearn/
MLRepository.html), which are iris data set, wine data set and glass data set. The
Gaussian kernel is used for multiclass classifications of given data sets.

From each data set, we randomly chose one training data set and 100 test data sets.
We found that the regularization parameter does not affect much on the performance
of multiclass LS-SVM regression, we fix v = 10 and obtain CV functions and GCV
functions, respectively, corresponding to the various values of o2. To illustrate the clas-
sification performance of multiclass LS-SVM regression, we run the multinomial kernel
logistic regression (Shim et al., 2007) and compare misclassification rates each other.
The averages of 100 misclassification rates from multiclass LS-SVM regression and the
multinomial kernel logistic regression are obtained from each test data set. |

Iris data set of 3 classes has 4 variables and 150 observations. The training data consist
of 100 observations and the test data consist of 50 observations. The kernel parameter
o is obtained from training data as 2.6 by CV function and 2 by GCV function.

Wine data set of 3 classes, which is from results of wines grown in the same region
in Italy but derived from three different cultivars, has 12 variables and 178 observations.
The training data consist of 120 observations and the test data consist of 58 observations.
The kernel parameter o2 is obtained from training data as 1.1 by CV function and 1.4
by GCV function.

Glass data set of .6 classes, which are from the study of classification of types of glass
motivated by criminological investigation, has 9 variables and 214 observations. The
training data consist of 140 observations and the test data consist of 74 observations.
The kernel parameter o2 is obtained from training data as 2 by CV function and GCV
function. |

We found the values of CV function and GCV function are very close with v = 10 for
each training data set. Figure 5.1 shows the values of CV function (solid curve) and GCV
function (dashed curve) for three data sets. In Figure 5.1 we can see that CV function
and GCV function show similar behaviors. The averages and their standard deviations of
100 misclassification rates by multiclass LS-SVM regression with kernel parameters from
GCV function and those of the multinomial kernel logistic regression are shown in Table
5.1. From the table we can see that although it is not proper comparison, multiclass
LS-SVM regression is as accurate as the other classification method in these examples.
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Figure 5.1: The values of CV function (solid curve) and GCV function (dashed curve)
on various values of bandwidth parameter with C=10.

6. Conclusions

In this paper we proposed LS-SVM regression for the multiclass classification problem
and obtained GCV function for the proposed procedure. An advantage of the proposed
multiclass and model selection scheme is that it may be easily applied to multiclass prob-
lem, and selects effectively hyper-parameters of model in one step using cross-validation
technique. The proposed method gives results that are comparable with the ones ob-

tained by multinomial kernel logistic regression. The model selection using GCV function
becomes easier and faster.
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