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H_umanity mathematics education: revealing and
clarifying ambiguities in mathematical concepts over
the school mathematics curriculum
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This study discusses how the humanity mathematics education can be realized in
practice. The essence of mathematical concept is gradually disclosed revealing the
ambiguities in the concept currently accepted and clarifying them. Historical development
of mathematical concepts has progressed as such, exemplified with the group-theoretical
thought and continuous function. In leaming of mathematical concepts, thus, students
have to recognize, reveal and clarify the ambiguities that intuitive and context-dependent
definitions in school mathematics have. We present the process of improvement of
definitions of a tangent and a polygon in school mathematics as examples. In the
process, students may recognize the limitations of their thoughts and reform them with
feelings of humility and satisfaction. Therefore this learning process would contribute to
cultivating students’ minds as the humanity mathematics education pursues.

| . Introduction

The theme ‘school mathematics for humanity
education’ was gestated at the PME31 held in
Seoul, South Korea. There, it was claimed that
“the nature of mathematical knowledge demands
strongly school mathematics to become a main
subject for humanity education going beyond the
practicality (Woo, 2007a, p.xxxiii).” Woo (2007b,
p.87), in the plenary session, claimed that the
humanity mathematics education enables students
to be aware of the reality, located inside human

being and all things, that dominates the world of

phenomenon, by the knowledge of mathematics.
He summarized it as ‘the cultivation of mind’.

Thus, it can be claimed that the humanity
mathematics education contributes to changes of
students’ minds. In concrete, it purposes change
(or improvement) of the cognitive framework with
which

students see, feel and their

interpret
experiences.

Mathematics we currently have is a cultural
heritage of human beings and school mathematics
is composed of basic concepts of it. What would
it mean for a student to learn the basic concepts?

Some students might use mathematics learnt at

school in their collegiate time or in their lifetime

* Gyeongin National University of Education, pkspark@ginue.ac.kr
** QGyeongin National University of Education, jhyim @ ginue.ac.kr

*** Yeongsin High School, myjynam@naver.com

- 201 -



doing, for example, stock exchange, banking or
statistical research. Some students may become
mathematicians or mathematics teachers. However,
more than half of our students may live, at least
apparently, without any relevance to the mathe-
matics learnt at school. In this reality how can
school mathematics be meaningfully taught to
students? In Woo’s (2007b) terms, how can we
students  wonderful

provide and impressive

experiences about mathematics to see the

phenomena in the world in wonder with
mathematical eyes? How can students’ minds
change while they learn mathematics?

We would like to look for the answer of this
question in learning process rather than mathe-
matical content. The process we discuss is not a
short-term one for a single class but a long-term
one which is gradually progressed over the whole
curriculum  from

mathematics elementary to

secondary school. In learming of school

mathematics students have to recognize the
ambiguities of the concepts they currently have
and to improve the concepts by clarifying the

(1976) claims that in

ambiguities. Lakatos
growing mathematical theories “growing concepts
are the vehicles of progress and the most exciting
developments come from exploring the boundary
regions of concepts from stretching them and
from differentiating formerly undifferentiated
concepts (p. 140).” According to him, there is no
theory that has not passed through such a period
of growth.

Teaching and learning of mathematics should
start from the concepts and thoughts students
currently possess, which has been integrated and

used as if ‘common senses (Freudenthal, 1991)

for them. They need to be challenged with
revealing the ambiguities in their concepts and
encouraged to clarify them. From the experience
of clarification they would feel improvements and

satisfaction. Therefore, teachers have to stimulate

‘students to draw out their own ideas, reflect on

them, see limitations or flaws in their ideas (or
concepts), and then improve them. We believe that
it would lead to the cultivation of students’ mind
that the humanity mathematics education aims at.
This article is composed of five chapters. The
theoretical backgrounds are followed in chapter 2.
The development of mathematical concepts over
the history of mathematics is discussed with some
examples in chapter 3. In chapter 4, two learning
procedures of mathematical concepts are proposed
humanity

to exemplify our ideas on the

mathematics education.

Il . Theoretical Backgrounds

From the beginning of human history, people
have been trying to explain what knowledge is
and how human beings get to know it (Jang,
2000). Some philosophers, assuming the absolute
truth, maintain that human beings seek for the
truth. Some other philosophers oppose those
theories on account that human beings cannot
ascertain what they know corresponds to the
absolute truth. If they can ascertain it, they have
already known the truth, thus do not have to
pursue it. Rationalists emphasize human reason
bestowing criteria of truth on it. They suppose
innate  reason which  human

upon beings

recognize, discern, think and judge. Their views
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are criticized in that they regard the reason as
absolute, given from the beginning. On the other
hand, empiricists insist that a baby is born in a
state of tabula rasa, and as hefshe experience
outer worlds hisfher experience is carved on it. It
is also criticized in that they regard human
reason too passively. Rationalism, putting too
much stress on the human innate reason, could
distegard the growth of human cognition and
education received from the moment a child is
born whereas empiricism could over-degrade it.
Hamlyn (1978) opposes to empiricism appealing
added to the

understand  his/her

that understanding must be

experience. To experience

human cognition must operate.
Kant (1998) claims that human beings a priori

pOSSsess through  which

cognitive forms, they

actively construct their knowledge. They cannot

know the world itself (Ding an sich), but
perceive and interpret it through their own
cognitive forms. Piaget (1970), who applies

Kant’s epistemology into psychology, explicates
how children adapt themselves to environments

and organize their

cognitive  structures. He
supposes cognitive functions that human beings
innately have, i.e. adaptation and organization.
The adaptation proceeds through assimilation and
accommodation. When children confront cognitive
disequilibrium, they try to assimilate the causes
of the disequilibrium into their existent cognitive
structures. If the causes conflict to their cognitive
structures, they accommodate the structures for
entering a cognitively equilibrium state.

From the theories discussed above, a common
factor can be drawn out. They all assume a
certain  cognitive

ability that human beings

innately have. construct

Human beings can
knowledge from perception and interpretation of
the world they live. We believe that, different
from rationalists, this innate cognitive ability is
developed and refined through applications of it
into one’s experience throughout one’s whole life.
Mathematics education also has to contribute to
this development and refinement of the cognitive
ability. This is what we intend with the humanity
mathematics education.

Conceming the act of knowing, Polanyi (1962)
supposes levels of the reality. According to him,
there are logical gaps between the levels. The
leap by which the logical gap is crossed indicates
achieving discovery. Ascending the levels of the
reality means improvements of the framework
with which we see, feel, and interpret the world
we dwell in. Our understandings of the world are
in accordance with the indications and standards
imposed by the framework (Polanyi, 1969). The
framework is a particular form of mental
existence. Thus, act of knowing means choosing
alternative framework or modifying the current
framework we dwell in, and involves a change in
our way of being. Freudenthal and van Hiele also
claim the existence of the levels and leaps in the
development of mathematical thinking. Freudenthal
(1983) expresses it with the alternation between
phainomenon (or content) and nooumenon (or
form). Van Hiele (1986) expounds it with five
levels in geometrical thinking.

Education is basically a social activity carried
out by teachers and learners. Therefore, social
factors are not negligible in education. According

to Vygotsky (1978), there are higher mental

(psychological) functions in other people that a
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child has to recognize and develop through social
interactions. Referring to the cognitive disequili-
brium resulting a change of cognitive framework,
Balacheff (1991) particularly emphasizes the social
dimension of contradiction, looking upon the
experience of contradiction as a starting point for
developmental process. “Mathematics can no
longer be learned by means of interactions with a
physical environment, but requires the confronta-
tion of the students’ cognitive model with that of
other students or of the teacher, in the context of
a given mathematical activity (p.89).” Grounded
on these theories, for the humanity mathematics
education, we would emphasize social aspects of
mathematics education as well as children’s own
cognitive abilities, structures and frameworks (in a
word, children’s minds) gradually developed level
by level.

"

Polanyi (1969) identifies knowing as “a
utilization of a framework for unfolding our
understanding in accordance with the indications

and standards imposed by the framework (p.134).”

Therefore, development or change of a framework |

implies getting new standards for judgment
(Oakeshott, 2001). Knowledge is true belief based
on legitimate reason (Hamlyn, 1978). Accepting
new knowledge means being persuaded by it,
leaded to believe it and accepting it as a new
standard (Polanyi, 1962). For this, students need
to see problems, insufficiencies, inadequacies,
flaws or inferiority (in a word, limitations) in the
standards they currently possess. Realizing the
various terms like

limitations, expressed in

cognitive conflicts (or disequilibrium, Piaget,
1970), 1962),

(Lakatos, 1976) and counter examples (Balacheff,

problems (Polanyi, refutations

1991), is highly emphasized as a starting point
for the improvement. It is more plausible, as
Vygotsky, Hamlyn and Balacheff assert, through
the social activities with other people. In
educational practice, it would be mainly with
teachers who stimulate their students to reflect on
their current standards, recognize its limitations
and change their frameworks.

Students may not accept a new framework or
modify present framework, unless they ascertain
the excellence of the new one. The new
framework, for instance, may resolve the conflict
that the present framework confronts, or extend
the boundary of it. The direction of change is
not casual choice between two equally acceptable
frameworks. Students need to feel themselves of
improvement by changing their frameworks. Being
educated may imply the improvement of way of
thinking, viewing and interpreting, or way of
being in Polanyi’s (1969) terms. The humanity
mathematics education pursues it.

Here, the improvements of students’ cognitive
frameworks need not assume a sort of realism or
positivism. What we emphasize is a satisfaction
about the change. From the experience of seeing
limitations and modifying their framework,
students may feel having better way of being and
be satisfied with it. This satisfaction can be a
motive and driving force for further learning.

(1962) describes this with

necessary  for

Polanyi intellectual

passions and commitments,
intellectual explorations. We believe that the
humanity mathematics education should purpose
this, a change of student’s mind.

The improvement proceeds through sequential

stages, step by step. The present state is never a
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completed one even though it is satisfying for the
moment. A limitation of it would be revealed and
while The

development of mathematical concepts has also

improved  some later. actual
been taken place in the history of mathematics in

this manner.

. Revealing and clarifying

ambiguities in mathematical

concepts in the history of
mathematics

The view that the purpose of schooling is on
bringing forth a change of learner’s mind is
academic

pertinent to the characteristics of

disciplines. The developmental processes of
academic disciplines are endless processes of
self-awareness, self-reforms and self-improvements.
All the academic knowledge entered into the
human history always has, more or less,
incomplete and vague parts. In the history of
academic disciplines, it is these incomplete or

vague parts that continual

impel pursuit of
academic exploration. Academic progress has been
made with the driving force of recognizing and
aspiring of improvement to fulfill the incomplete-
ness and to clarify the vagueness.

The history of mathematics has also been
flowing down in this manner. The essence hidden
in mathematical concepts or objects has been

revealed gradually and the ambiguities of

concepts, definitions and theories have been
clarified step by step. These developmental
processes have been pointed out by many

mathematicians and mathematics educators such as
(1741, 1746), Toeplitz (1963), Klein
(1948), Lakatos (1976), Freudenthal (1983, 1991),
Brousseau (2002), and Branford (1908), for its

Clairaut

importance and helpfulness in teaching and
learning of mathematics. In this chapter, the ways
of developmental process, revealing hidden
essence and clarifying ambiguities, are discussed

with examples.

1. Revealing hidden essence

Freudenthal (1983, 1991) says that mathematics
is gradually systemized and organized through the
mathematization process, which 1s a process of
alternation of phainomenon and nooumenon. The
nooumenon to organize phainomena at a level
becomes an object to investigate (le. a
phenomenon) at the next level. Applying this idea
to geometry, van Hiele (1986) discerns geometri-
cal thinking with five levels.

The ascending process of thinking levels can
be understood as a process that the essence
concealed with many folds of veils reveals itself
gradually. When we concentrate ourselves on the
examination of the things given to us, the figures
(the essence hidden inside the things) reveal
themselves to us. In the next level, when we
examine the figures disclosed to us with a
presumption that those would be the essence of
things, the characteristics of figures (the essence
hidden inside the figures) disclose themselves
alluding that “the figures are not the final goal
but the characteristics of figures, the essence, is

hidden
through  the

in there.” And again, when we look

characteristics of figures, the

- 205 -



propositions hidden inside gradually reveal
themselves to us as if saying “the characteristics
of figures are not the essence.” And then, when
we focus on the propositions, a theoretic system
of geometry gradually exhibits its features. This
is how the essence hidden inside the things
initially given in many folds reveals itself one
after another.

The gradual process of revealing the essence is
exemplified with the development of group
concept. Group concept, a fundamental concept of
modern algebra, has aided the advance of algebra
as an example of the evolution of an algebraic
structure and as a ‘midwife’ of modern algebra
(Wussing, 1984) used to explore and clarify
algebraic structures. The evolution of abstract
group theory is generally asserted to arise at the
end of the nineteenth century by pure abstraction
from the concept of a permutation group derived
from the theory of algebraic equations and
Galois’ theory. However, according to Wussing
(1984), some mathematicians believe that the
group idea is much older than generally thought.
Poincaré said the history of group concept is as
old as mathematics in view that the actual basis
of the ancient Euclidean proofs was the concept
and properties of a group. Miller, a group
theorist, claims that the history of group theory
coincides with the beginning of mathematics.
Speiser also asserts that the modes of thought
associated with geometric ornaments thousands
years ago can be interpreted group theoretically.
In the middle ages, there are also some instances
that may be interpreted as pre-figurations of
implicit group-theoretical thinking.

All the group-theoretical thinking before the

eighteenth century was implicit and hidden.
According to Wussing (1984), who sees the
automorphisms of structures as hidden essence of
group-theoretical thought, it is inherent not only
in the theory of algebraic equation but also in

other fields of mathematics. “Abstract

group
theory was the result of gradual process of
abstraction from implicit and explicit group
theoretical methods and concepts involving the
interaction of its three (the theory of algebraic
equations, number theory and geometry) historical
roots (p.16) in the end of the eighteenth (the
former two theories) and the beginning of the
nineteenth (the latter) century (p.19).” The
group-theoretical thought in geometry, though they
were not linked to the contemporary development
of the theory of permutation groups as in the
theory of algebraic equation and in number
theory, were in the study of geometric relations
and in the concurrent consolidation of invariant
theory (p.27). The explicit use of group theory in
geometry was achieved by Klein in his Erlangen
Program of 1872

structures. The

to organize the geometric

group-theoretical thoughts had

been  gradually explicitly recognized and
constructed as a formal algebraic theory, and
sooner or later, the group theory came to the
center of modern mathematics being used as an
important tool to analyze mathematical structures

and the relationships between them.

2. Clarifying ambiguities

Brousseau (2002, pp. 58-60) identifies the
development of mathematical concepts passing

through three consecutive levels: ‘protomathematical
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concept,’ ‘paramathematical ~ concept’ and

‘mathematical concept’. The name ‘protomathe-
matical’ is originally suggested by Chevallard,

who distinguishes mathematical development with

‘protomathematical concepts’, ‘paramathematical
concepts’ and ‘actual mathematics’ (Brousseau,
2002, p. 97).

At the level of mathematical concept, a

concept is positioned at the level of a theoretical

concept where

ambiguities and errors are
removed. This level can be stepped on by putting
the concept dealt with under the control of a
mathematical theory. Here, its exact definition is
of structures in which it

allowed in terms

intervenes and of the properties that it satisfies. It
is the final level. Protomathematical concept level
and paramathematical concept level precede it. At
the paramathematical level, the concepts used
implicitly are recognized and served as a tool to
name objects whose characteristics and properties

are studied. Though the concepts are not

organized or theorized, they are familiar and used
very well, thus quite acceptable without any
contradiction. This level is preceded by the level
of protomathematical concept, where incomplete
but coherent concepts are implicitly used for
solving problems. Brousseau expressed such an
evolution of a mathematical concept as a process
to protect the concept, which has already been
used as a tool for solving problems without
recognition, from ambiguities and errors by
focusing on, recognizing, clarifying, and removing
the ambiguities and errors.

In the explication Brousseau proposes about the

development of mathematical

concepts, an

important feature is seen. It is that the explicit

theorization or even recognition of a mathematical

concept is preceded with the wuse or

familiarization of it. The initial state of the

concept is quite ambiguous and possibly
erroneous. However, starting from this level, a
mathematical concept is

gradually revealed,

clarified and those

theorized. Examples of
concepts are easily found in the history of
mathematics. The development of the concept of
continuous function would be one of them.

A naive concept of continuity would be not
cutting down or breaking down. A continuous
line may be understood as a line which can be
drawn in one stroke (i.e. drawn without lifting
pencil from a paper) with no ‘gap’ or ‘jump’ in
it. Euler’s characterization of a continuous
function in the Cartesian plane was similarly
informal, rather intuitive and vague (Lakoff and
Nafez, 1997). It was an application of the
inferential structure of the everyday understanding
of motion, flow, wholeness and generations of
quantities to functions and variations using naive
expressions such as ‘approach indefinitely’ and
‘as little as one wishes’ (Boyer, 1959; Jourdain,
1913; Niinez, Edwards & Matos, 1999), and it
was also used by even eminent mathematicians
like Newton and Leibniz in the 17th century
(Boyer, 1959; Nafez, Edwards & Matos, 1999).

Euler defined the continuity as follows with an
illustration of figure 1. "A continuous curved line
is so defined, that its nature is expressed by a
single definite function of x. But if a curved line
is defined in such a way that its different parts
BM, MD, DM, etc.,, are expressed by different
functions of x, so that, then a part is defined by

one function, a part MD is described by another
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function, we call curved lines of this kind
discontinuous (Euler, referred by Bottazzini, 1986,

p. 25).”

[Figure 1.] Euler’s illustration of a continuous curve
(Bottazzini, 1986, p. 25)

Afterward, mathematicians recognized that
continuity in a curve did not depend upon its
being expressible by means of a single equation
in continuous functions, and the necessity of a
new definition of continuity came up (Boyer,
1959). It was Cauchy who made the notion of
continuity precisely mathematical and showed that
this depends upon the concept of limit (Ibid.),
pointing out the vagueness and uncertain character
in the definition of Euler (Bottazzini, 1986).
Though Cauchy defined the continuous function
more clearly and built the theory of continuity
upon a precise definition of the notion of limit,
his concept was based on  geometrical
representation to believe that the continuity of a
function was sufficient for the existence of a
derivative (Boyer, 1959).

It was Weierstrass who noticed this erroneous
concept and constructed a purely formal
arithmetic basis for the continuity of a function,
independent of all geometric intuition and of
motion, flow and wholeness on which Euler,
Newton and Leibnitz relied. He regarded the
ideas of wvariable and limit as purely static

interpreting a variable x as simply a letter

designating any one of a collection of numerical
values. Whereas Cauchy defined the limit as
"when the values successively attributed to the
same variable indefinitely approach a fixed value

in such a way as to end by differing from it as

little as one wishes, this latter is called limit of

all the 1821,
Bottazzini, 1986, p. 103),” in the limit concept of

others (Cauchy, referred by

Weierstrass, no idea of approaching is involved

but only a static state exists.

Weierstass’ definition of continuity deals better
with complex and pathological cases (Lakoff and
Nifiez, 1997, Nafez, Edwards & Matos, 1999),
informal  definition of

where the intuitive

continuity does mnot hold. Building a new
definition of continuity is also related to the
re-establishment of arithmetic as the dominant

theory via the huge program of the
arithmetization of mathematics which went on
from Cauchy to Weierstrass (Lakatos, 1976;
Nifez, Edwards & Matos, 1999).

After Weierstrass, mathematicians noticed that
the essence of the limit concept is on the
concept of real number, and the fundamental
theorems of limits could be proved rigorously and
without recourse to geometry on the basis of a
new definition of real number as Dedekind
suggested (Boyer, 1959). To define the continuity
of a function Bolzano and Cauchy had to have a
concept of a function, and the independent
variable of it was tacitly understood as one
which could take on all values in an interval
corresponding to the points of a line segment.
Dedekind hidden

arithmetized it beyond the geometric picture, and

revealed this assumption,

expressed formally with an ordered set (Ibid.).
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Whence, the mathematical theory of continuity
became based on the logically developed theories
of number and sets of points.

We have examined that the development of

mathematical

concepts over the

history of
mathematics is a process of revealing the essence
and clarifying ambiguities hidden in the concepts,
with two examples. How can the gradual process
of revealing and

clarifying be applied to

children’s learning of mathematics?

IV. Revealing and clarifying
ambiguities in mathematical
concepts students have over
the school mathematics
curriculum

In school mathematics, to meet with children’s
eye-levels, mathematical concepts are introduced
intuitively or context-dependently despite of its
naivety and insufficient mathematical rigors. After
then formalization and abstraction processes move
on step by step revealing and clarifying
ambiguities in the initial concepts and in the
context-dependent characteristics. In the
followings, the revealing and clarifying processes
of definitions of a tangent and geometric figures
over the whole school mathematics curriculum are
instantiated.
with

1. Revealing ambiguities counter

examples

The ‘logic of mathematical discovery’ Lakatos

(1976) proposes, indicates two directions for
modification of definitions when counter examples
turn up. The one is a modification to make the
counter example not an example of the definition.
The other is a modification to include the counter
example as an example of the concept. There is
certainly a significant difference between these
two directions in that the former excludes the
counter example whereas the latter includes it.
However,

they may be cognates in that a

limitation of the present concept is revealed

through the resulted an

counter examples
improvement of the concept. We name the former
‘exclusive modification’ and the latter ‘inclusive
modification’.

In school mathematics those counter examples
make students troubled with a cognitive conflict
(or cognitive disequilibrium in Piaget’s terms).
They have to reflect on the concept possessed at
present to recognize its limitations and reorganize
their structures with  the

cognitive improved

concept. These processes can be experienced
certainly not in a single class but in several
classes at intervals over the school period. The
conceptual improvement of definitions of a
tangent of a curve that Yim and Park (2004)
propose is an example.

In Korean school mathematics curriculum, ‘a
tangent of a curve’ is firstly introduced in the
context of circle at the 7th grade (the first year
of middle school) as ‘a line which meets at only
one point with a curve (Definition 1)’. Looking
at the pictures in Figure 2, students can compare
three relationships between a circle and a line,
and discover that the number of points at which

a line meets a circle is different according to the
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relationships. Here, referring to the middle picture
in Figure 2, the concept of a tangent of a curve

may be formed as Definition 1.

o ,\Ej/ ,\L/I

[Figure 2.] Positional relationships
between a circle and a line

At the 9th grade (the third year of middle
school), students draw parabolic graphs learning
quadratic functions. Here, they have two kinds of
new experience about the concept of a tangent.
First, as they leamn to express a geometric figure
with an algebraic expression, they can link a
geometric tangent to an algebraic expression. A
parabola (a graph of a quadratic function) can be
represented with a quadratic expression, and a
line. with a linear expression. Finding out the
meeting points of a curve and a line becomes
solving two simultaneous equations, and the
number of meeting points equals the number of
roots of the equations. According to Definition 1,
if a line

iIs a tangent of a parabola, the

simultaneous equations

{ y=ax*+bx+c
y=mx-+n

have only one solution. Solving the simultaneous
equations transforms to

solving a quadratic

equation
ax*+ bx+ c=mx+ n,

and having only one solution means the

determinant of the quadratic equation is 0, i.e.
D=(b—m)>—4alc—n) =0.
After this, students may apply this new link to

the curve y=x

the context of circle for ‘recollected learning
(Freudenthal, 1991)’. A circle can be expressed
with a quadratic expression. Through a similar
procedure of solving simultaneous equations,
students may be able to understand that the
determinant can be a standard for judging
whether a line is a tangent of a circle or not.
This conjecture holds in the context of circle,
since the expression of a circle is also quadratic.
But, in the other general curves it does not. In
other words, linking tangent to the determinant is
context-dependent (where a curve can Dbe
represented with a quadratic expression) concept
although it is not recognized at the moment.
Here, studénts encounter an example of tangent
which conflicts to the concept of t’ange.nt' learnt at

the 7th grade. The line in figure 3, a tangent of

2, meets at only one point with

it. There is no conflict in this case.

[Figure 3.] A tangent of a quadratic function

But, the line, x=1 at figure 4 meets at only
one point with the same parabola, but does not
touch the curve. In this case, whether the line
x=1 can be regarded as a taﬁgent or not has
to be discussed in class. During the discussion,
the concepts of a tangent that students currently

possess and its limitation would be revealed.

- 210 -



——

[Figure 4.] A line meeting at a point with a quadratic
function

In the context of circle, the statement that ‘a
line that touches a circle meets at only one

point’ holds since a line that meets at only one

point with a circle touches it. However, it
becomes different in other curves such as
parabolas, hyperbolas, etc. In the context of

parabola, defining a tangent in terms of the

number

of meeting points with the

curve
confronts counter examples, thus calls for a
modification. The counter example such as figure
4 should be excluded in modified definition. It is
‘exclusive modification’.

The modified definition of a tangent ‘a line
which touches a curve but not cuts the curve
(Definition 2)’ can be taken in this context. Then,
students are recommended to compare the new
definition with the old definition. Some students
may apply their new definition to the context of
circle. But others may still look at the number of

The

meeting  points. latter have to

explore
whether there is a line which touches a circle but
does not meet with the circle at one point, or
which meets with a circle at one point but does
not touch a circle. From the exploration students

can recognize the two conditions ‘meets at one

point’ and ‘touches a curve’ are necessary and

sufficient conditions in the context of circle. That
is, Definition 1 was sufficient in the context of
circle. But its ambiguity i1s eventually revealed in
the context where °‘meets at one point’ is
necessary but not sufficient condition of being a
tangent. Here, students may feel that ‘touches a
curve’ is a better for the definition of a tangent
since it comprises both the context of circle and
that of parabola.

At this point, teacher can challenge students by
asking “would it be always true that a tangent of
a curve meets with the curve at only one point?”
It would make students critically reexamine the
first definition of a tangent line. In the context of
circle and parabola, it is true. But what about
other general curves? Students may draw a
general curve, check this, and find out that it is
not always true. This is a simple activity indeed
that does not take much time. Definition 1,
served as a foundation once, has to be rejected
in more general contexts. It is very important in
highlights the

that it of former

problems
definition students once thought as proper but
recognize its limitations later, which finally leads
to reject them. Through this procedure, students
may be humble their thoughts and pleased with a
feeling of an improvement.

Encountering a counter example that challenges
present definition may perplex students. At the
same time, however, it may inspire longings for
proper modification. Introducing a new definition
of a tangent without any challenge for present
definition cannot impress students. If it is given
to students without stimulating any reflection, it

may be accepted as if it was determined from

the beginning. There, a change of mind is hardly
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expectable.

For some while, Definition 2 is satisfactory.
Yet it is not the end. Some students come into
to encountering some examples where it is not
applied. The curve in Figure 5 is y=x"+1 and
the line is y=1. There, the line does not touch

the curve but passes through it. Can it not be

regarded as a tangent?

-2 4+

[Figure 5.] Tangent line that violates Definition 2

Students, perplexed, might try to apply the
criterion of determinant. However, it does not
hold either, since it is applied only to quadratic
expressions. This problem is resolved with a
reference to the concept of derivative. In the

context of derivative the line y=1 is a tangent

of the curve y=x3+1 at (0,1). The firmness
of Definition 2 is weakened. Can the existence of
a derivative be a new criterion for judging a
tangent of a curve?

At the point ((,0)on the curve y=|x in
figure 6, although there seems to be plenty of
lines that touch but not pass the curve, there
exists no derivative at the point. In this example
the old definition cannot decide whether there are
plentiful of tangent lines or none. But, the new

criterion is decisive. Thus Definition 2 must be

modified or replaced with other definition.

'
-
da 44—

3+

[Figure 6] y=|xl

Even though the existence of a derivative is
accepted as a criterion on which the existence of
a tangent is judged, there still remains a problem.
What does tangent mean particularly in geometric
sense? A derivative interpreted as a slope of a
tangent line at a point does not define ‘tangent’
but use the term in its interpretation. Point, line,
plane and space are geometrical terms. Tangent is
also a term that has to be understood geometric-
ally. But the existence of a derivative cannot
define it.

~As an alternative, ‘the limit of secants’ can be
proposed. It is defined as follows: when a point
P on a curve is fixed, and another point € on

the curve approaches to P, a tangent of the

curve at P is the limit of PQ (Definition 3).
The limit of secants is quite inclusive and visual
definition not requiring operations of algebraic
expressions. With this definition, it is easily
understand that the curves in figure 2, 3 and 5
have a tangent line at a point on the curves, and
the curve in figure 6 does not have any tangent
at the origin. It can also be applied where a
tangent is parallel to y-axis (figure 7). The line

y=2 in figure 7 can be accepted as a tangent
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line at point (2, 0) with Definition 2, since it
touches the circle x°+3y°=4 but not passes
through it. Here, however, a derivative cannot be
calculated because finding out a derivative at a
point means getting a slope of a tangent line,

and a slope cannot be defined in this case. It is

resolved with Definition 3.

| «

—+
=

f

-4

[Figure 7.] Tangent line parallel to y-axis

The curve in figure 8 is more complicated.

Does the point (0, 0) on the curve have a

tangent?

y
10 —

[Figure 8] y=2V [l

Since the origin is a cusp of the two curves
y=2Vx and y=92/—-x, a derivative at the

point (0, 0) does not exist. That is, the

differentiability cannot be a criterion of the

existence of a tangent. However, according to

Definition 3, it has a tangent line, the y-axis.
The tangent does not touch the curve but passes
it. Definition 3 is an ‘inclusive modification’ in
that it includes counter examples such as figure 6
and figure 8.

In summary, the context-dependent definition of
a tangent has been modified step by step from ‘a
line which meets at only one point with a curve’
to ‘the limit of secants’ through reflections and
comparisons. In school mathematics where
subjects matters are dealt with rather intuitively
than rigorously, definitions are inevitably context-
dependent. The definition of a tangent discussed
above is an example that shows how initial
intuitive and vague definitions are clarified and
improved stepping on several stages with counter
examples. Passing through these steps students
possibly feel that the definition currently
possessed may not a complete form. It may be
modified by another counter example in future
time. Even Definition 3 may not be accepted as
a complete form or final essence, but an
incomplete, context-dependent form that can be
changed and improved further. The essence of a
tangent may not be sufficiently revealed yet. This
experience would be helpful for students to
critically reexamine their concept or definition of
a tangent, and to willingly modify them whenever
a problem with the concept appears in the future.

Reflection and comparison of perspectives is
(Vygotsky, 1978; Balacheft,

1991). If students do not see any limitation of

basically social
current perspectives, they would not feel any
necessity of changing them. Therefore, challenging
should be provided in advance to an alternative.

It may be teachers’ roles to challenge students’
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limited perspectives and show an alternative.

2. Revealing the ambiguities with context-

dependent definitions

Following dialogues are excerpted from a math
class in a middle school in Korea (Park and

Yim, 2004).

Teacher: At how many points does line 3 meet
with the circle?

Student: It meets at infinitely many points.

Teacher: Why do you think so?

Student: Because line 3 meets at infinitely many

points inside the circle.

line 3

N

line 2

line 1

[Figure 9.] Lines meeting with a circle

In school mathematics, when a plane figure
such as a polygon or a circle is said, does it
include inner part or not? Mathematically, and in
Korean middle school mathematics textbooks, a
circle is defined as a figure or a set of points
that are at the same distance from a point. In
this definition, a circle does not include the
inside. If a person claims that a secant meets at
two points with a circle, which implies the
student in the above dialogue is wrong, he/she
would mean that a circle is only the boundary
However, in Korean

excluding the inside.

elementary school mathematics textbooks, a circle

is defined as a round figure that can be sketched
copying a round thing. In this definition, it is not
distinguishable whether a circle includes its inner
part or not. That is, there is a conflict between
the definition of a circle in elementary school
textbooks and in middle school textbooks.

What about

polygon is a subset of a single closed curve.

a polygon? Mathematically, a

Thus, it can be inferred that a polygon includes
only the boundary without its inner part. In
textbooks, a polygon is

sometimes defined as a figure surrounded with

school mathematics

some segments. In this definition, a polygon
includes the inside (or only the inside in extreme
cases).

The problem whether a polygon or a circle is
only the boundary or the boundary-and-inside is
connected to the problem whether a polyhedron
or a cylinder is filled in or empty. If a polygon
or a circle is only the boundary, in consistency, a
polyhedron or a cylinder should be empty. If a
polygon or a circle includes inside, a polyhedron
or a cylinder has to include inside, too.

Viewing that a polyhedron is an empty solid is
regarding a rectangular parallelepiped as a solid
abstracted as an empty box. This view matches
the context that makes a development figure by
cutting and unfolding the solid along the edges.
However it has a problem. In the context of
making a truncated pyramid cutting a pyramid
with a plane parallel to the bottom, if the
pyramid is empty solid, the resulting truncated
pyramid is an open solid. Since its lid is open,
the truncated pyramid cannot have two bottoms.

If a inside, a

polyhedron includes its

rectangular parallelepiped cannot be abstracted as
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an empty box but a solid like a brick. In this
case a truncated pyramid has two bottoms.
However, it is impossible to make a development
figure by cutting and unfolding the solid along
the edges. An empty box can be unfolded, but a
brick cannot. In summary, either of the two
views does not simultaneously satisfy both the
two contexts ‘cutting a solid by a plane’ and
‘unfolding a solid along its edges’. It is a
dilemma.

This dilemma can be resolved with
discrimination between a region of a figure and a
figure. In strictly logical point of view, it would
not be recommendable to change meaning of a
term according to the context it is used. A good
definition would hold a consistent and firm
interpretation regardless of the context. Defining
‘a triangle’ and ‘a region of a triangle’ separately
to avoid a logical conflict would be appropriate
in this view. In Korean school mathematics in
the late 1960s and early 1970s, when it was
influenced by the ‘New math movement’, a figure
and a region of a figure was distinguished. For

example, a triangle was defined as “the union of

the segments AB, BC, CA, when A, B,

C are not on the same line” and the region of a
triangle is “a set of points on a triangle and its
inside (ME, 1979, p227, 233).” But it is not
defined as such in current school mathematics.
Schooling is accomplished over a long period.
In the meanwhile, at certain stages, less strict

definitions are introduced. In

other words,

‘context-dependent  definitions’ are allowed in

school mathematics. For rectangular parallelepiped,

as an example, a

non-strict, rather obscure

definition such as ‘a solid surrounded by six

rectangles’ is allowed. With the definition, ‘a
filled solid’ is adopted in the context of cutting
whereas ‘an empty solid’ is chosen in the context
of unfolding. It may be wrong in terms of
logical consistency. However, it can be accepted
in school mathematics, which is a peculiar logic
of school matheﬁatics.

The context-dependent definitions of a polygon
and a polyhedron can be taught in a way that
intuitive and vague definition is introduced in the
beginning, and more modified or improved
version in upper classes. As students ascend the
grades, new context where the meaning of a term
students already know has to be clarified or
modified is provided. It is impossible to introduce
all such contexts at the same time, particularly in
the beginning. Various contexts may stimulate
students’ thought in different ways, thus should
be introduced one after another over the school
mathematics curriculum. The definitions in school
mathematics are definitely not perfect in view of
advanced  mathematics. @ However, what is
requested there is just being appropriate and
relevant in the context.

A student in the 2nd grade of elementary
school in Korea learns a circle as a round figure
doing an activity of copying round materials such
as coins, cans and cups. This activity could make
the student perceive a circle as a certain figure.
This context does not request to distinguish
whether it means only ‘boundary’ or ‘boundary-
and-inside’. To the student, even if a round
figure shown to him/her is not a perfect circle,
he/she may not discriminate but acknowledge it
as a circle. It would be acceptable at this stage.

In other words, a second-grade-elementary-school-
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student does not have

to possess a perfect

concept of a circle. Hefshe will experience
improvement from then on. Thus, it is enough
for students to construct a concept to the extent
of being relevant to the context given.

New context may provide an opportunity for
students to reflect on the concept currently have.
Someday, drawing a circle using a pair of
compasses they may see the circle drawn with a
new perspective such as a figure determined by a
point (center) and a length (radius). In this
context they may reflect their former concept of
a circle. They may clarify the circularity, thinking
that a circle is not roughly round but perfectly
round. Or, they may notice the vagueness of the

[4

terms ‘a round figure’, and appreciate the
clearness of the new definition, ‘a set of points
at a certain distance from a point or a figure
composed of such points’. They may go further
to pose a question whether a circle includes
inside or not with recognition of the vagueness in
the former definition.

The case of a polygon is also the same. A
child in the 2nd grade of elementary school may
have a concept of triangle as a figure surrounded
by three segments, with activities of investigating
and observing triangular shapes in their world such

as triangles (musical instrument), traffic signs,

triangular rulers, clothes hanger, and the like.

[Figure 10.] Exploring triangular figures
(MEHRD, 2004, p.39)

Some of these shapes are empty whereas
others are filled as figure 10 shows. However,
emptiness or fullness is not important in this
context, thus children cannot consciously inquire
whether the definition includes inside or not.
Unless given a new opportunity for reflection,
children may regard a triangle meaning only its
boundary, or its boundary and inside according to
the contexts where it is placed, with no
problems.

An introduction or change of other concepts
could serve to look back on the concept of
polygons. Students, who change their thoughts
about a circle from a round figure to a set of
points at a certain distance from a point, might

ask questions such as “how about triangles or

rectangles?” “Can they be defined in a similar

manner?” “Is the concept sufficient that a triangle
is a triangular figure or a figure surrounded by
three segments?” or “If a circle means only its
boundary, how about a triangle?” These conscious
reexaminations of their concepts can be a fruitful
base fostering an understanding of the relationship
between closed curves and polygons.

Somewhat vague definitions like a round figure
or a figure surrounded by three segments are
allowed in school mathematics. We do not
contend that the definition should be persistent
throughout the whole mathematics curriculum
from elementary school to high school. Education
is a long-term process. Definitions should be
reexamined and reformed step by step, not at
once or at one level. A child who looks upon a
circle with its boundary, later (for example at the
first of high school in Korea),

year may

understand the difference between expressions of
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figures (equations) and expressions of regions
(equalities) without much difficulty.

to be
their

classrooms with a full appreciation about why

Here, the role of teachers needs

emphasized. Teachers have to

enter

and how meanings of terms (or concepts) are
varied at different contexts (or stages) in school
mathematics with the merits and limitations of
the definitions in each context, what kinds of
conceptions are formed with context-dependent

definitions, and how such

conceptions  are
modified and improved over the whole school
mathematics curriculum. Teachers, who are fully
aware of the educational intentions inherent in the
ways of ftreating a certain concept in school
the delicate

mathematics and who

recognize

problems or dilemmas derived from those
treatments, may lead their students to critically
reexamine and revise their conceptions. When
they play these roles faithfully, educational values
inherent in the subject can be revealed and fully

appreciated.

V. Closing Remarks

Plato (1996) said that intellectual investigation
starts from self-awareness of being unenlightened
and of appreciating the wonderfulness of being
enlightened. According to him, the mind which
feels the wonderfulness of enlightenment has
peculiar characteristics appeared in a person who
loves wisdom. In reality, we have so many

students

who are not aware of

being
unenlightened, nor of the wonderfulness inherent

in mathematical knowledge. We believe that they

can have an opportunity of awareness reflecting
their minds on mathematical knowledge. However,
far from opening and taking the opportunity,
many students rather give up mathematics with a
thought that it with

has nothing to do

improvements of their minds.

Mathematics education should not be a
procedure of accumulating mathematical
knowledge but of changing students’ minds.

Students have to ascend their cognitive levels
through the learning of mathematical knowledge
recognizing the lowness of the levels where they
are, e.g. the vagueness of their concepts and the
flaws in the concepts.

Academic disciplines have some extent of truth
(clearness) and some extent of flaws (vagueness)
at the same time. No one can claim that he/she
reaches at the final stage (the complete clearness)
of academic exploration but continually strive to

ascend to  higher levels. The

history  of
mathematics shows the progress of mathematical
investigation which can be interpreted as a
procedure of gradual revelation and clarification
of the vagueness or the essence. Through the
realization of the essence in mathematical content,
students can be led to intermal awakening, and to
the cultivation of mind (Woo, 2007b).

From the intellectual experience of this kind
where the essence reveals itself more clearly,
students may have delight feeling that the world
they view is different from the one before, and
that they are improved. For example, when
students notice the concept of a tangent such as
‘a line meets at one point with a circle’ was
naive with a formation of the concept ‘a line

touches a curve’, and when they realize the latter
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concept is also somewhat vague referring the
concept of ‘the limit of secants’, they could feel
improvements of their way of being and have
desires for further improvement.

Woo inspires mathematics teachers “to open
school mathematics through didactical analysis of
it to enjoy the form and structure within its
contents, revive the wonder and impression
mathematicians felt when they first discovered it,
and inspires it in students’ mind (2007b, p.88).”
We believe that learning can be acquired through
the operation of intelligence, emotion and will
altogether. The emotion in intellectual experience
is composed of positive feelings such as delight,
satisfaction, growth and improvement and also of
negative feelings such as pity and despair for the

limitations of human beings. The two feelings are

like the two sides of a coin. Therefore, together

with the delight of being improved, students may

have the humble attitude that their current

knowledge is not perfect. They may pursue the

improvement of it, even though they cannot reach

at the center of the essence no matter how hard
they try to. They may respect the essence, the
reality, or the world including other people with
sympathy that we all are human beings who
inevitably have limitations and deficiencies.

Lastly, we would like to emphasize that
learning requests students’ commitment as Polanyi
(1962) insists. The precious cannot be acquired
unless we do our best to have them. Education is
the same. Students need to make great efforts to
break out the confinements surrounding their
current concepts, ideas, thoughts with ‘a conviction
of being improved.

Being enlightened through education means

opening our eyes of mind, which would be more
precious than any other things in the world. We
believe that the humanity mathematics education
can be realized when teachers and students
participate in educational program do their best
with

for teaching and learning mathematics

humble and open attitude.
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