단일 카메라를 이용한 보행자의 높이 및 위치 추정 기법

Estimation of Human Height and Position using a Single Camera

  • 이석한 (중앙대학교 첨단영상대학원) ;
  • 최종수 (중앙대학교 첨단영상대학원)
  • Lee, Seok-Han (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University) ;
  • Choi, Jong-Soo (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University)
  • 발행 : 2008.05.25

초록

본 논문에서는 단일 카메라를 이용하여 영상 내에 존재하는 객체의 3차원 공간 상에서의 위치 및 높이를 추출하기 위한 기법을 제안한다. 본 논문에서 제안하는 방법은 영상으로 사영된 3차원 장면(scene)에 대한 기준 좌표계를 마커(marker)를 이용해서 설정한 다음, 대상 물체의 2차원 영상을 기준 좌표계로 직접 역사영(back-projection) 시킴으로써 대상 물체에 대한 3차원 공간에서의 위치 및 높이를 계산한다. 그리고 부정확한 카메라 교정으로 인하여 발생하는 역사영 오차를 마커의 기하학 정보를 이용해서 보정한다. 제안된 방법은 기존의 방법에서 주로 이용되던 소실점(vanishing point) 및 소실선(vanishing line) 등을 이용하지 않으며, 3차원 공간 내에서의 객체의 높이 및 위치의 동시 추정이 가능한 장점이 있다. 또한 단일 카메라만을 이용하여 필요한 위치 및 높이 정보를 추출하기 때문에 다중 카메라를 이용한 기법에서 발생할 수 있는 3차원 좌표계 상에서의 대응점의 모호성, 다수의 카메라를 정확히 교정시켜야 하는 어려움 등의 문제가 발생하지 않는다. 실험 결과를 통하여 제안된 기법의 정확도 및 안정성을 확인하였다.

In this paper, we propose a single view-based technique for the estimation of human height and position. Conventional techniques for the estimation of 3D geometric information are based on the estimation of geometric cues such as vanishing point and vanishing line. The proposed technique, however, back-projects the image of moving object directly, and estimates the position and the height of the object in 3D space where its coordinate system is designated by a marker. Then, geometric errors are corrected by using geometric constraints provided by the marker. Unlike most of the conventional techniques, the proposed method offers a framework for simultaneous acquisition of height and position of an individual resident in the image. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences from outdoor environments.

키워드

참고문헌

  1. D. Leibowitz, A. Criminisi, and A. Zisserman, "Creating Architectural Models from Images," Proc. EuroGraphics'99 vol.18, No.3, Sep. 1999
  2. A. Criminisi, I. Reid, and A. Zisserman, "Single View Metrology," Int'l J. Computer Vision, vol. 40, no. 2, pp. 123-148, 2000 https://doi.org/10.1023/A:1026598000963
  3. O. Faugeras, "Three-Dimensional Computer Vision," The MIT Press, 1993
  4. R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge Univ. Press, 2003
  5. G. Golub and C. Loan, "Matrix Computations: 3rd ed.," Johns Hopkins Univ. Press, 1996
  6. Z. Zhang, "Flexible New Technique for Camera Calibration," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 1330-1334, Nov. 2000
  7. A. Criminisi, "Single-View Metrology:Algorithms and Application," Proceedings of the 24th DAGM Symposium on Pattern Recognition, 2002
  8. A. Criminisi, " Accurate Visual Metrology from Single and Multiple Uncalibrated Images," Springer-Verlag, 2001
  9. C. BenAbdelkader, R. Cutler, and L. Davis, "Person Identification using Automatic Height and Stride Estimation," Proc. European Conf. Computer Vision, pp. 155-158, June. 2002
  10. L. Havasi, Z. Szlavik, and T. Sziranyi, "Detection of Gait Characteristics for Scene Registration in Video Surveillance System," IEEE Trans. Image Processing, vol. 16, no. 2, pp. 503-510, Feb. 2007 https://doi.org/10.1109/TIP.2006.888339
  11. Z. Liu and S. Sarkar, "Improved Gait Recognition by Gait Dynamics Normalization," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 6, pp. 863-876, June 2006 https://doi.org/10.1109/TPAMI.2006.122
  12. L. Lee, R. Romano, and G. Stein, "Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 758-769, Aug. 2000 https://doi.org/10.1109/34.868678
  13. W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou, and S. Maybank, "Principal Axis-Based Correspondence between Multiple Cameras for People Tracking," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 663-671, Apr. 2000
  14. K. Kim and L. Davis, "Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering," Proc. European Conf. Computer Vision, Part III, pp. 98-109, May 2006
  15. S. Khan and M. Shah, "A Multiple View Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint", Proc. European Conf. Computer Vision, Part IV, pp. 133-146, May 2006
  16. S. Khan and M. Shah, "Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1355-1361, Oct. 2003 https://doi.org/10.1109/TPAMI.2003.1233912
  17. W. Hu, T. Tan, L. Wang, and S. Maybank, "A Survey on Visual Surveillance of Object Motion and Behaviors," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 3, pp. 334-353, Aug. 2004
  18. I. Haritaoglu, D. Harwood, and L. Davis, "W4: Real-time Surveillance of People," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, Aug. 2000 https://doi.org/10.1109/34.868683
  19. S. Mckenna, S. Jabri, J. Duric, H. Wechsler, and A Rosenfeld, "Tracking Groups of People," Comput. Vision and Image Understand. 80, pp. 42-56, 2000 https://doi.org/10.1006/cviu.2000.0870
  20. B. Liang, Z. Chen, and Nick Pears, "Uncalibrated Two-View Metrology," Proc. Int'l Conf. Pattern Recognition, vol. 1, pp. 96-99, Aug. 2004
  21. J. Gomez, G. Simon, and M. Berger, "Calibration Errors in Augmented Reality: a Practical Study," Proc. IEEE and ACM Int'l Symposium on Mixed and Augmented Reality, pp. 154-163, June. 2005