DOI QR코드

DOI QR Code

Sorption of Chromium Ions from Aqueous Solution onto Chemically Activated Carbons Developed from Maize Cobs

  • Youssef, A.M. (Faculty of Science, Mansoura University) ;
  • El-Nabarawy, Th. (Physical Chemistry Department, National Research Centre) ;
  • Shouman, Mona A. (Physical Chemistry Department, National Research Centre) ;
  • Khedr, S.A. (Physical Chemistry Department, National Research Centre)
  • Received : 2008.07.14
  • Accepted : 2008.09.30
  • Published : 2008.12.30

Abstract

Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The textural parameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77 K. The chemistry of the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygen groups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303 K. Two processes were investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at various initial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the proton competition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiency and to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factor in determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.

Keywords

References

  1. Ajmal, M.; Rifaqat, A. K.; Shahana, A.; Jameel, A.; Rais, A. Bioresearch Technol. 2003, 86, 147. https://doi.org/10.1016/S0960-8524(02)00159-1
  2. Romerol, C. B.; Antonio, B.; Gonzo, E. E. Adsorp. Sci. Technol. 2004, 22, 237. https://doi.org/10.1260/0263617041503499
  3. Chen, J. P.; Lin, M. Water Res. 2001, 35, 2385. https://doi.org/10.1016/S0043-1354(00)00521-2
  4. Youssef, A. M.; El-Nabarawy, Th.; Samra, S. E.; Colloids and Surfaces A 2004, 235, 153. https://doi.org/10.1016/j.colsurfa.2003.12.017
  5. Patterson, J. W. "Industrial Wastewater Treatment Technology", 2nd ed., Butterworths Heinemenn, London, 1985.
  6. Raji, C.; Anirudhan, T. S. Water Res. 1998, 32, 3722.
  7. Kobya, M.;.Demirbas, E.; Bayramoglu, M. Adsorp. Sci. Technol. 2004, 22, 583. https://doi.org/10.1260/0263617042879465
  8. El-Hendawy, A. N. A.; Samra, S. E.; Girgis, B. S. Colloids and Surfaces 2001, 180, 209. https://doi.org/10.1016/S0927-7757(00)00682-8
  9. Hourieh, M. A.; Alaya, M. N.; Youssef, A. M.; El-Sejarieh, F. Adsorp. Sci. Technol. 1999, 7, 675.
  10. Selomulya, C.; Meeyoo, V.; Amal, R. J. Chem. Technol. Biotechnol. 1999, 74, 111. https://doi.org/10.1002/(SICI)1097-4660(199902)74:2<111::AID-JCTB990>3.0.CO;2-D
  11. Sharma, D. C., Forster, C. F. Bioresource Technol. 1994, 49, 31. https://doi.org/10.1016/0960-8524(94)90170-8
  12. Perez-Candela, M.; Martin-Martinez, J. M.; Terregrasa-Macia, R. Water Res. 1995, 29(9), 2174. https://doi.org/10.1016/0043-1354(95)00035-J
  13. Agrawal, G. S.; Bhuptawat, H. K.; Chaudhari, S. Bioresource Technol. 2006, 97(7), 949. https://doi.org/10.1016/j.biortech.2005.04.030
  14. Sharma, D. C.; Forster, C. F. Water SA 1996, 22(2), 153.
  15. El-Shafey, E. I.; Youssef, A. M. Carbon Science 2006, 7(3), 171.
  16. Boehm, H. P. Carbon 1994, 32, 759. https://doi.org/10.1016/0008-6223(94)90031-0
  17. ASTM standard Annual book of ASTM standard "Standard method for pH of activated carbon", D3838-80, 15.01, 531, 1996.
  18. Haghseresht, F., Nouri, S.; Lu, M. G. Q. Carbon 2003, 41, 881. https://doi.org/10.1016/S0008-6223(02)00437-2
  19. APHA Standard Methods for the Examination of Water and Wastewater, 16th Ed., American Public Health Association, Washington, D. C., USA, 1985.
  20. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 613.
  21. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  22. Alaya, M. N.; Youssef, A. M.; Karman, M.; Abdel-Aal, H. E. Carbon Science 2006, 7, 9.
  23. Bansal, R. C.; Donnet, J. B.; Stoeckli, H. F.; "Active Carbon", Marcel Dekker, New York, 1988.
  24. El-Shafey, E. I. Ph. D. thesis, University of Hertfordshire, UK, 2000.
  25. Wittbrodt, P. R.; Palmer, C. D. Enviromn. Sci. Technol. 1995, 29(1), 255. https://doi.org/10.1021/es00001a033
  26. Ho, Y. S.; Mckay, G. Chem. Eng. J. 1998, 70(2), 115. https://doi.org/10.1016/S0923-0467(98)00076-1
  27. Gundogan, R.; Acemioglu, B. ; Alam, M. H. J. Colloid and Interface Sci. 2004, 269(2), 303. https://doi.org/10.1016/S0021-9797(03)00762-8
  28. Youssef, A. M.; El-Nabarawy, Th.; Samra, S. E. Colloids and Surfaces A 2004, 235, 153. https://doi.org/10.1016/j.colsurfa.2003.12.017
  29. Raji, C.; Manju, G. N.; Anirudhan, T. S. Water Research 1998, 32, 3062. https://doi.org/10.1016/S0043-1354(98)00068-2
  30. Giles, C. H.; MacEwan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973. https://doi.org/10.1039/jr9600003973
  31. Langmuir, I. J. Am. Chem. Soc. 1918, 4, 1361.

Cited by

  1. Removal and Recovery of Chromium from E-waste by Functionalized Wood Pulp: A Green Bio-hydrometallurgical Approach pp.2250-1754, 2018, https://doi.org/10.1007/s40009-018-0672-8