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Poisson Banach Modules over a Poisson C*-Algebra

CHOONKIL PARK
Department of Mathematics, Hanyang University, Seoul 133-791, Korea
e-mail : baak@hanyang.ac.kr

ABSTRACT. It is shown that every almost linear mapping h : A — B of a unital Poisson
C*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorphism
when h(2"uy) = h(2"u)h(y) or h(3"uy) = h(3"u)h(y) for all y € A, all unitary elements
u € Aand n = 0,1,2,---, and that every almost linear almost multiplicative mapping
h: A — B is a Poisson C*-algebra homomorphism when h(2z) = 2h(z) or h(3z) = 3h(x)
for all z € A. Here the numbers 2,3 depend on the functional equations given in the
almost linear mappings or in the almost linear almost multiplicative mappings. We prove
the Cauchy—Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-
algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-
algebra.

1. Introduction

A Poisson C*-algebra A is a C*-algebra with a C-bilinear map {-,-} : Ax A —
A, called a Poisson bracket, such that (A, {:,-}) is a complex Lie algebra and

{ab,c} = a{b,c} + {a,c}b

for all a,b,c € A. Poisson algebras have played an important role in many mathe-
matical areas and have been studied to find sympletic leaves of the corresponding
Poisson varieties. It is also important to find or construct a Poisson bracket in the
theory of Poisson algebra.

A Poisson Banach module X over a Poisson C*-algebra A is a left Banach
A-module endowed with a C-bilinear map {-,-} : A x X — X such that

{{avb}vx} = {av{bvx}}f{bv{aax}}a
{a,b} 2 = a-{ba}—{b,a-x}

for all a,b € A and all x € X. Here - denotes the associative module action (see [3],
7, 18, [(19).

Let X and Y be Banach spaces with norms ||-|| and || - ||, respectively. Consider
f: X — Y to be a mapping such that f(tx) is continuous in ¢ € R for each fixed
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x € X. Assume that there exist constants § > 0 and p € [0,1) such that

1z +y) = f=) = I < o(l=” + lly[l")

for all z,y € X. Rassias [12] showed that there exists a unique R-linear mapping

T :X — Y such that
20

1) - T@) < 5=

for all x € X. Gavruta [2] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ¢ : G x G — [0,00) a function such that

[|[”

Bx,y) = 2702w, 27y) < 00
=0

for all x,y € G. Suppose that f: G — Y is a mapping satisfying

1f(x+y) = flz) = f) < p(z,y)

for all z,y € G. Then there exists a unique additive mapping T : G — Y such that

1f(2) = T(@)|| < 5¢(x, )

N =

for all x € G. C. Park [9] applied the Gavruta’s result to linear functional equations
in Banach modules over a C*-algebra.

Jun and Lee [4] proved the following: Denote by ¢ : X\ {0} x X'\ {0} — [0, 00)
a function such that

Plx,y) =Y 37903z, 37y) < oo
=0

for all z,y € X \ {0}. Suppose that f: X — Y is a mapping satisfying

Tty

l2s (5

)= f(@) = fWl < e(z,y)

for all z,y € X\ {0}. Then there exists a unique additive mapping T': X — Y such
that

1f(2) = f(0) = T(2)] < 3 (2, —2) + o(==,3z))

for all z € X \ {0}. C. Park and W. Park [11] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C*-algebra. Several authors have
investigated functional equations (see [1], [10], [13]-][18]).

Using the stability methods of linear functional equations, we prove that every
almost linear mapping h : A — B is a Poisson C*-algebra homomorphism when
h(2"uy) = h(2™u)h(y) or h(3™uy) = h(3"u)h(y) for all y € A, all unitary elements

Wl =
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u€ Aand n=0,1,2, -, and that every almost linear almost multiplicative map-
ping h : A — B is a Poisson C*-algebra homomorphism when h(2z) = 2h(z) or
h(3z) = 3h(z) for all x € A. We moreover prove the Cauchy—Rassias stability of
Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homo-
morphisms in Poisson Banach modules over a unital Poisson C*-algebra.

2. Homomorphisms between Poisson C*-algebras

Throughout this section, let A be a unital Poisson C*-algebra with norm || - ||,
unit e and unitary group U (A), and B a unital Poisson C*-algebra with norm || - ||.

Definition 2.1. A C*-algebra homomorphism H : A — B is called a Poisson
C*-algebra homomorphism if H : A — B satisfies

H({a,b}) = {H(a), H(b)}
for all a,b € A.

We are going to investigate Poisson C*-algebra homomorphisms between Pois-
son C*-algebras associated with the Cauchy functional equation.

Theorem 2.1. Let h : A — B be a mapping satisfying h(0) = 0 and h(2"uy) =
h(2™u)h(y) for ally € A, allu € U(A) and n =0,1,2,---, for which there exists a
function ¢ : A* — [0,00) such that

oo

(2.) By, w) = S 2 9p(2, 2y, 292, V) < oo,
§=0
(2.) V-t s+ {2 w0} — () — )~ (), B < ol 9, 2 w),
(2.ii) [1h(2"u*) — h(2™u)*|| < p(u,u,0,0)
forallp € T .= {N € C| [N =1}, all 2,y,z,w € A, all u € U(A) and
h(2™
n=0,1,2---. Assume that (2.1v) lim,_ % is invertible. Then the mapping

h: A — B is a Poisson C*-algebra homomorphism.

Proof. Put z =w =0 and g =1 € T! in (2.ii). It follows from Gavruta Theorem
[2] that there exists a unique additive mapping H : A — B such that

(2.1) [h(z) = H(z)[| < 5 &(x,2,0,0)

N =

for all x € A. The additive mapping H : A — B is given by

(2.1) H(z) = lim %h(?%c)

n—00

for all z € A.
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By the assumption, for each p € T,
|h(2" ) — 21 (2"~ )| < (27,22, 0,0)
for all z € A. And one can show that
lph(2"2) = 2uh(2" )| < |pl - [|R(2"2) = 2h(2" 2| < @(2" "2, 2" 2,0,0)
for all p € T" and all x € A. So
|h(2" ) — ph(2"2) | <IA(2" ) — 2uh(2"~ 2)] + |2uh(2" ) — uh(2"2)|
<e(2" e, 2" e, 0,0) + (2" e, 2" e, 0, 0)

for all p € T and all € A. Thus 27"||h(2"ux) — ph(2"z)|| — 0 as n — oo for all
p €T and all z € A. Hence

h(2™ h(2"
(2.2) H(px) = lim M2 pr) = lim % = pH(z)

n—oo on n—oo

for all p € T! and all z € A.

A 1
Now let A € C' (XA # 0) and M an integer greater than 4|A|. Then |M| <<

2 1

1- 3= 3 By [5, Theorem 1], there exist three elements 1, s, uz € T such
that 3% = p1+ p2 + ps. And H(x) = H(3 - %x) = 3H(%x) for all z € A. So
H(%x) = éH(w) for all x € A. Thus by (2.2)

A A M A

H(Ax):H(%ﬁﬂz):MoH(%B =—H@B—=z

") = 3 HB)
= Y (e + ow + ) = L (H () + Hpaw) + H(15))

3 3
M M A
= ?(m + po + p3)H(x) = 3 3MH(CI?) = \H(z)

for all z € A. Hence

H(Cz +ny) = H(Cz) + H(ny) = CH(z) + nH (y)

for all ¢,n € C(¢,n #0) and all z,y € A. And H(0z) =0 = 0H () for all z € A.
So the unique additive mapping H : A — B is a C-linear mapping.
Since h(2"uy) = h(2"u)h(y) for all y € A, all u e U(A) and n =0,1,2,-- -,

(2.3) H(uy) = lim %h(2”uy) = lim iﬂh(Q"u)h(y) = H(u)h(y)

n—oo 2 n— o0

for all y € A and all u € U(A). By the additivity of H and (2.3),
2"H(uy) = H(2"uy) = H(u(2"y)) = H(u)h(2"y)
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for all y € A and all u € U(A). Hence
1

1
(2.4 H(uy) = o H(wh(2"y) = H(u) = h(2")
for all y € A and all u € U(A). Taking the limit in (2.4) as n — oo, we obtain
(2.5) H(uy) = H(u)H (y)

for all y € A and all u € U(A). Since H is C-linear and each = € A is a finite linear
combination of unitary elements (see [6, Theorem 4.1.7]), i.e., z = Z;”Zl Ajuj (A €
C,u; € U(A)),

Z)\ ujy Z ujy Z)\ iH(uj)H

j=1
- H(Z Aju)H (y) = H(x)H(y)

for all x,y € A. Thus H : A — B is an algebra homomorphism.
By (2.3) and (2.5),

H(e)H(y) = H(ey) = H(e)h(y)

for all y € A. Since lim,,_,.. ————= = H(e) is invertible,

for all y € A.
It follows from (2.1) that

(2.6) H(z) = lim h2"z)

n— 00 22n

for all x € A. Let x =y =0 in (2.ii). Then we get

1h({z, w}) = {h(2), M(w) }] < (0,0, 2, w)

for all z,w € A. So

(2.7) 22nllh({2"/Z 2"w}) —{h(2"z), h(2"w)}|
1 n 1 n
< 53e(0,0,2"2,2"w) < 72(0,0,2"2,2"w)

for all z,w € A. By (2.i), (2.6), and (2.7),
2n 2w n, ony

s 00 922n n—o0 22n
. h(22) h(2"
lim ——{h(2"2), h(2"w)} = lim {%,%}

n—oo n—oo

{H(2), H(w)}
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for all z,w € A.
By (2.i) and (2.iii), we get

h(2"u* h(2™u)* h(2"
H(u*) = lim h@) _ B0 = (lim ( “))*
n—oo on n—oo n n— oo 2n
= H(u)"

for all uw € U(A). Since H is C-linear and each x € A is a finite linear combination
of unitary elements, i.e., z = 3770, Aju; (A € Cyu; € U(A)),

for all x € A. So the mapping h = H : A — B is an involutive mapping.
Therefore, the mapping i : A — B is a Poisson C*-algebra homomorphism, as
desired. O

Corollary 2.2. Let h : A — B be a mapping satisfying h(0) = 0 and h(2"uy) =
h(2"u)h(y) for ally € A, allu € U(A) and n = 0,1,2,---, for which there exist
constants 0 > 0 and p € [0,1) such that

[h(pe + py + {2, w}) — ph(z) — ph(y) — {h(z), h(w)}]]
<O(l|I” + [lyl1” + (2] + lwl]”),
[P(2"u") = h(2"u)"|| < 20

forall p € T, all z,y,z,w € A, all u € U(A) and n = 0,1,2,---. Assume that
h(2"

lim,, o0 (2ne) is invertible. Then the mapping h : A — B is a Poisson C*-algebra

homomorphism.

Proof. Define @(a,y, z,w) = 0(|la|l” + [lyl[” + l|2l/” + [[w][?), and apply Theorem
2.1. O

Theorem 2.3. Let h : A — B be a mapping satisfying h(0) = 0 and h(2"uy) =
h(2™u)h(y) for ally € A, allu e U(A) and n =0,1,2,---, for which there exists a
function ¢ : A* — [0,00) satisfying (2.i), (2.iii) and (2.iv) such that

(2.v) [P(patpy+{z, w})—ph(z)—ph(y)—{h(z), Aw)}] < p(2,y, 2, 0)

for p =14, and all z,y,z,w € A. If h(tz) is continuous in t € R for each fized
x € A, then the mapping h : A — B is a Poisson C*-algebra homomorphism.

Proof. Put z=w =0 and g =1 in (2.v). By the same reasoning as in the proof of
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Theorem 2.1, there exists a unique additive mapping H : A — B satisfying (2.}).
The additive mapping H : A — B is given by

1
H(x)= nhj& Q—nh(2":c)

for all z € A. By the same reasoning as in the proof of [12, Theorem]|, the additive
mapping H : A — B is R-linear.

Put y=2z=w=0and g =1 in (2.v). By the same method as in the proof of
Theorem 2.1, one can obtain that

H(iz) = lim h(2iz) = lim ih(2"z)

=iH(x)
for all x € A. For each element A € C, A = s + it, where s,t € R. So
H(\z) = H(sx +itx) = sH(z) + tH(ix) = sH(z) + itH (z)
= (s+it)H(z) = AH (z)
for all A € C and all x € A. So
H(Cx +ny) = H(Cz) + H(ny) = CH(z) +nH(y)

for all {,n € C, and all x,y € A. Hence the additive mapping H : A — B is
C-linear.
The rest of the proof is the same as in the proof of Theorem 2.1. 0

Theorem 2.4. Let h: A — B be a mapping satisfying h(2z) = 2h(z) for allz € A
for which there exists a function ¢ : A* — [0,00) satisfying (2.i), (2.ii), (2.iii) and
(2.iv) such that

29 [1(2"uy) — h(2"u)h(y)|| < #(u,y,0,0)

forally e A, allu e U(A) andn =0,1,2,---. Then the mapping h: A — B is a
Poisson C*-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear mapping H : A — B satistying (2.7).
By (2.1) and the assumption that h(2z) = 2h(z) for all z € A,

1h(2"uy) — h(2"uw)h(y)|
= R 2my) — hEm R )|

1 1
< 47m80(2mu72my7070) S 2?80(27"’“’27”“3%070)’

which tends to zero as m — oo by (2.i). So

h(2"uy) = h(2"u)h(y)
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forally e A, all u e U(A) and n =0,1,2,---. But by (2.1),

H(z) = lim iﬂh(?”x) = h(z)

n—oo

for all x € A.
The rest of the proof is the same as in the proof of Theorem 2.1. O

Now we are going to investigate Poisson C*-algebra homomorphisms between
Poisson C*-algebras associated with the Jensen functional equation.

Theorem 2.5. Let h : A — B be a mapping satisfying h(0) = 0 and h(3"uy) =
h(3"u)h(y) for ally € A, allu € U(A) and n =10,1,2,---, for which there exists a
function ¢ : (A\ {0})* — [0,00) such that

(2.vi) olx,y, z,w) := i 377 p(372,3%y,37 2,37 w) < oo,

3=0
(vit) (LD ) () h() )} < .2 0),
(2.viii) [I1h(3"u*) — h(3"u)*|| < ¢(u,u,0,0)
for all p € T, all x,y,z,w € A, allu € U(A) and n = 0,1,2,---. Assume that
limap— oo h(g:e) is invertible. Then the mapping h : A — B is a Poisson C*-algebra
homomorphism.

Proof. Put 2z = w =0 and g = 1 € T! in (2.vii). It follows from Jun and Lee
Theorem [4, Theorem 1] that there exists a unique additive mapping H : A — B
such that

Ih(z) ~ H(@)| < 5 (3, ~2,0,0) + 3(~2,32,0,0))

for all z € A\ {0}. The additive mapping H : A — B is given by

H(z)= lim iﬂh(i}”x)

n—oo

for all x € A.
By the assumption, for each p € T,

12h(3" ) — ph(2-3"1a) — ph(4- 3" 12)|| < (2-3"'z,4-3""12,0,0)
for all z € A\ {0}. And one can show that

lph(2 - 3" ) + ph(4 - 3" 2) — 2uh(3")||
<pl - |p(2- 8" ) + h(4- 3" a) — 2h(3")|
<p(2-3"12,4-3""12,0,0)
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for all 4 € T' and all x € A\ {0}. So
[1(3" p) — ph(3")|
— A" ) %uh(Z L3l — %uh(zl 37 1)
+%um2¢w”m)+%um4qw—hg—uh@mwn
< S l12(3" ) — ph(2 3" 1) — ph(a 3"
-+%Hﬂh@-3”*xy+uhu.3”*x)—2uh@”xm
< g¢(2.3"*1x,4.3”*1x,0,0)

2

for all p € T' and all z € A\ {0}. Thus 37"||h(3"uz) — ph(3"z)|| — 0 as n — oo
for all 4 € T' and all x € A\ {0}. Hence
wh(3"x)

n

h(3" ) = lim ———~ = pH(x)
n—00 3n n—00 n

for all p € T' and all x € A\ {0}.

By the same reasoning as in the proof of Theorem 2.1, the unique additive
mapping H : A — B is a C-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the mapping
h: A — B is a Poisson C*-algebra homomorphism. O

Corollary 2.6. Let h : A — B be a mapping satisfying h(0) = 0 and h(3"uy) =
h(3"u)h(y) for ally € A, all u € U(A) and n = 0,1,2,---, for which there exist
constants 0 > 0 and p € [0,1) such that

Jon( IR OD) ) — ) — (h(2), ()|

< Ol[][” + y[1” + [[2[[" + [Jwl][?),
(3" u*) — h(3™u)*| < 20

forallp € TY, allz,y,z,w € A\{0}, allu € U(A) andn = 0,1,2,---. Assume that

h(3™
limn_‘ooM is invertible. Then the mapping h : A — B is a Poisson C*-algebra
homomorphism.
Proof. Define ¢(z,y,z,w) = 6(||z|[” + ||y[|" + [|2]|” + ||w||?), and apply Theorem
2.5. O

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen functional
equation.

Now we are going to prove the Cauchy—Rassias stability of Poisson C*-algebra
homomorphisms in unital Poisson C*-algebras associated with the Cauchy func-
tional equation.
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Theorem 2.7. Let h : A — B be a mapping satisfying h(0) = 0 for which there
ezists a function ¢ : A* — [0,00) satisfying (2.i), (2.ii) and (2.iii) such that

(2.ix) (2w - 2"v) — h(2"u)h(2"0)|| < (2" u,2™v,0,0)

for all u,v € U(A) and n = 0,1,2,---. Then there exists a unique Poisson C*-
algebra homomorphism H : A — B satisfying (2.7).

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear involutive mapping H : A — B satisfying (2.1).
By (2.ix),

1
4—n||h(2”u -2"0) — h(2"u)h(2™V)||
1 n n 1 n n

< E@(Z u,2"v,0,0) < ﬁcp(Q u,2™v,0,0),

which tends to zero by (2.i) as n — co. By (2.1),

H(uv) = lim h(@u - 2v) ZHQ v) = lim e u)ZLz(Z v)
2™u) h(2"
— lim %% — H(u)H(v)

for all u,v € U(A). Since H is C-linear and each = € A is a finite linear combination
of unitary elements, i.e., x = Z;":l Aju; (A € Couy € U(A)),

H(zv) = H) | M\jujv) = Z NjH (ujv) = X H(u;)H ()
= H(Z Ajuj)H(v) = H(z)H (v)

for all z € A and all v € U(A). By the same method as given above, one can obtain
that
H(zy) = H(x)H(y)

for all z,y € A. Thus H : A — B is an algebra *-homomorphism.
The rest of the proof is the same as in the proof of Theorem 2.1. |

One can obtain similar results to Theorem 2.7 for the Jensen functional equa-
tion and the Trif functional equation.
3. Homomorphisms between Poisson Banach modules over a unital Pois-

son C*-algebra

Throughout this section, assume that A is a unital Poisson C*-algebra with
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unitary group U(A), and that X and Y are left Poisson Banach .A-modules with
norms || - || and || - ||, respectively.

Definition 3.1. A C-linear mapping H : X — Y is called a Poisson module
homomorphism if H : X — Y satisfies

H({{a" b}’ 1‘}) = {{a’ b}’ H(.r)},
H({a,b} - x) = {a,b} - H(x)
for all a,b € A and all x € X.

We are going to prove the Cauchy—Rassias stability of homomorphisms in Pois-
son Banach modules over a unital Poisson C*-algebra associated with the Cauchy
functional equation.

Theorem 3.1. Let h : X — Y be a mapping satisfying h(0) = 0 for which there
exists a function ¢ : X% — [0,00) such that

(3.9) Bla,y) == 277 (22, 2y) < oo,
§=0

(3.1i) [h(px + py) — ph(z) — ph(y)| < ¢(z,y),

(3'iii) ”h({{u7 U}7 w})—{{u, U}7 h(l‘)}” < (,0(.%‘, x)»

(3.iv) [A({u, v} x) —{u,v}-h(z)| < p(z, )

forallp € TY, all z,y € X and all u,v € U(A). Then there exists a unique Poisson
module homomorphism H : X — 'Y such that

CAY [h(z) = H(2)|| < 5¢(x, )

N =

forallx € X.

Proof. By the same reasoning as in the proof of Theorem 2.1, one can show that
there exists a unique C-linear mapping H : X — Y satisfying (3.v). The C-linear
mapping H : X — Y is given by

(3.1) H(z) = lim Q%h(ﬂx)
for all x € X.
By (3.iii),
g b2 (o}, 2}) — ({0}, g h(2" )}
= e In(E{u,v},27%)) — {fu, 0}, h(2")}|

27L

1 n n
< (2, 2"),
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which tends to zero for all z € X by (3.i). So
H({{u,v},2}) = lim Qi,,h@”{{u oha})
= lim {{u, v}, *h(2" )} = {{u, v}, H(z)}

for all x € X and all u,v € U(A). Since H is C-linear and {-,-} is C-bilinear
and since each a € A is a finite linear combination of unitary elements, i.e., a =

s Ajuy (A € Cyuy € U(A)),

m

H({{a,v},2}) = {{z:A uj, v}, x}) = Z H({{uj, v}, 2})

m

Z {{UJ,U} H - Z U],’U} H } - {{CL,'L}},H(IL‘)}

for all x € X, all a € A and all v € U(A). Similarly, one can show that

H({{a,b},2}) = {{a, b}, H(2)}

for all x € X and all a,b € A.
By (3.iv),

g h(2" 0} - 2) — {0} - o h(2") |
= collh({u, v} - 270) — fu, 0} - h(2"a)|
< (20, 2"),
which tends to zero for all z € X by (3.i). So
H{u,v}-2)= nll—>rrolo %h@"{um} )
— Tim ({u, v} %h@”x)) — (v} H(z)

for all z € X and all u,v € U(A). Since H is C-linear and {-,-} is C-bilinear
and since each a € A is a finite linear combination of unitary elements, i.e., a =

Z;’nzl At ()‘] €Cuj € U(A)),

m

H({a,v} -z ZA uj, v} @) =Y N H({uj,v} - x)

j=1

—Z)\{uj,v} H(x Z juj, v} - H(z) = {a,v} - H(x)

Jj=1 j=1

3
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forall z € X, all a € A and all v € U(A). Similarly, one can show that
H({a,b} - x) = {a,b} - H(x)

forallz € X and alla,b € A. Thus H : X — Y is a Poisson module homomorphism.
Therefore, there exists a unique Poisson module homomorphism H : X — Y
satisfying (3.v). O

Corollary 3.2. Let h: X — Y be a mapping satisfying h(0) = 0 for which there
exist constants 0 > 0 and p € [0,1) such that

[h(pa + py) — ph(z) — ph(y)ll < O(||[” + [[yl*),
||h({{u,7)}7x}) - {{u,v},h(w)}” < 29”*7"”;07
[h({u, v} - 2) = {u, v} - h(z)]| < 20]|2|]”

forallp € T, all z,y € X and all u,v € U(A). Then there exists a unique Poisson
module homomorphism H : X — 'Y such that

20
— P
Ih(z) - H@)| < oo lal
forall x € X.
Proof. Define p(z,y) = 0(||z||” + ||y||*), and apply Theorem 3.1. O

Theorem 3.3. Let h : X — Y be a mapping satisfying h(0) = 0 for which there
exists a function ¢ : X? — [0,00) satisfying (3.i), (3.iii) and (3.iv) such that

|h(px + py) — ph(x) — ph(y)| < o(@,y)

for p=1,1, and all z,y € X. If h(tzx) is continuous in t € R for each fized v € X,
then there exists a unique Poisson module homomorphism H : X — Y satisfying
(3.v).

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1. O

Now we are going to prove the Cauchy-Rassias stability of homomorphisms
in Poisson Banach modules over a unital Poisson C*-algebra associated with the
Jensen functional equation.

Theorem 3.4. Let h : X — Y be a mapping satisfying h(0) = 0 for which there
exists a function ¢ : (X \ {0})? — [0, 00) satisfying (3.iii) and (3.iv) such that

B(x,y) =Y 37p(3x,37y) < oo,
j=0

p + py

J2n(“

) = ph(z) — ph()ll < (z,y),
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for all w € T' and all z,y € X. Then there exists a unique Poisson module
homomorphism H : X — Y such that

[h(z) — H(z)|| < (o2, —2) + ¢(—=, 37))

Wl =

for all x € X \ {0}.
Proof. The proof is similar to the proofs of Theorems 2.5 and 3.1. O

Corollary 3.5. Let h: X — Y be a mapping satisfying h(0) = 0 for which there
exist constants 0 > 0 and p € [0,1) such that

I2n( ) — ) — by | < O(11P + [1y]”)

[h({{u, v}, 2}) = {{u, v}, W) }] < 20][[[",
[({u, v} - @) = {u, v} - h(z)]| < 26]|=[[P

for all p € T, all x,y € X \ {0}, and all u,v € U(A). Then there exists a unique
Poisson module homomorphism H : X — Y such that

P)o
In(e) ~ H)l < EEE oy
for all x € X\ {0}.
Proof. Define p(z,y) = 0(]|z||” + ||y||P), and apply Theorem 3.4. O

One can obtain a similar result to Theorem 3.3 for the Jensen functional equa-
tion.
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