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Abstract. It is shown that every almost linear mapping h : A → B of a unital Poisson

C∗-algebra A to a unital Poisson C∗-algebra B is a Poisson C∗-algebra homomorphism

when h(2nuy) = h(2nu)h(y) or h(3nuy) = h(3nu)h(y) for all y ∈ A, all unitary elements

u ∈ A and n = 0, 1, 2, · · · , and that every almost linear almost multiplicative mapping

h : A → B is a Poisson C∗-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x)

for all x ∈ A. Here the numbers 2, 3 depend on the functional equations given in the

almost linear mappings or in the almost linear almost multiplicative mappings. We prove

the Cauchy–Rassias stability of Poisson C∗-algebra homomorphisms in unital Poisson C∗-

algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C∗-

algebra.

1. Introduction

A Poisson C∗-algebra A is a C∗-algebra with a C-bilinear map {·, ·} : A×A →
A, called a Poisson bracket, such that (A, {·, ·}) is a complex Lie algebra and

{ab, c} = a{b, c}+ {a, c}b

for all a, b, c ∈ A. Poisson algebras have played an important role in many mathe-
matical areas and have been studied to find sympletic leaves of the corresponding
Poisson varieties. It is also important to find or construct a Poisson bracket in the
theory of Poisson algebra.

A Poisson Banach module X over a Poisson C∗-algebra A is a left Banach
A-module endowed with a C-bilinear map {·, ·} : A×X → X such that

{{a, b}, x} = {a, {b, x}} − {b, {a, x}},
{a, b} · x = a · {b, x} − {b, a · x}

for all a, b ∈ A and all x ∈ X. Here · denotes the associative module action (see [3],
[7], [8], [19]).

Let X and Y be Banach spaces with norms || · || and ‖ ·‖, respectively. Consider
f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each fixed
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x ∈ X. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)

for all x, y ∈ X. Rassias [12] showed that there exists a unique R-linear mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. Găvruta [2] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ϕ : G×G → [0,∞) a function such that

ϕ̃(x, y) =
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such that

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ G. C. Park [9] applied the Găvruta’s result to linear functional equations
in Banach modules over a C∗-algebra.

Jun and Lee [4] proved the following: Denote by ϕ : X \ {0}×X \ {0} → [0,∞)
a function such that

ϕ̃(x, y) =
∞∑

j=0

3−jϕ(3jx, 3jy) < ∞

for all x, y ∈ X \ {0}. Suppose that f : X → Y is a mapping satisfying

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \{0}. Then there exists a unique additive mapping T : X → Y such
that

‖f(x)− f(0)− T (x)| ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ X \ {0}. C. Park and W. Park [11] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C∗-algebra. Several authors have
investigated functional equations (see [1], [10], [13]-[18]).

Using the stability methods of linear functional equations, we prove that every
almost linear mapping h : A → B is a Poisson C∗-algebra homomorphism when
h(2nuy) = h(2nu)h(y) or h(3nuy) = h(3nu)h(y) for all y ∈ A, all unitary elements
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u ∈ A and n = 0, 1, 2, · · · , and that every almost linear almost multiplicative map-
ping h : A → B is a Poisson C∗-algebra homomorphism when h(2x) = 2h(x) or
h(3x) = 3h(x) for all x ∈ A. We moreover prove the Cauchy–Rassias stability of
Poisson C∗-algebra homomorphisms in unital Poisson C∗-algebras, and of homo-
morphisms in Poisson Banach modules over a unital Poisson C∗-algebra.

2. Homomorphisms between Poisson C∗-algebras

Throughout this section, let A be a unital Poisson C∗-algebra with norm || · ||,
unit e and unitary group U(A), and B a unital Poisson C∗-algebra with norm ‖ · ‖.

Definition 2.1. A C∗-algebra homomorphism H : A → B is called a Poisson
C∗-algebra homomorphism if H : A → B satisfies

H({a, b}) = {H(a),H(b)}

for all a, b ∈ A.

We are going to investigate Poisson C∗-algebra homomorphisms between Pois-
son C∗-algebras associated with the Cauchy functional equation.

Theorem 2.1. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nuy) =
h(2nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which there exists a
function ϕ : A4 → [0,∞) such that

(2.i) ϕ̃(x, y, z, w) :=
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw) < ∞,

(2.ii) ‖h(µx+µy+{z, w})−µh(x)−µh(y)−{h(z), h(w)}‖ ≤ ϕ(x, y, z, w),

(2.iii) ‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(u, u, 0, 0)

for all µ ∈ T 1 := {λ ∈ C | |λ| = 1}, all x, y, z, w ∈ A, all u ∈ U(A) and

n = 0, 1, 2, · · · . Assume that (2.iv) limn→∞
h(2ne)

2n
is invertible. Then the mapping

h : A → B is a Poisson C∗-algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 ∈ T 1 in (2.ii). It follows from Găvruta Theorem
[2] that there exists a unique additive mapping H : A → B such that

(2.†) ‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x, 0, 0)

for all x ∈ A. The additive mapping H : A → B is given by

(2.1) H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A.
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By the assumption, for each µ ∈ T 1,

‖h(2nµx)− 2µh(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all x ∈ A. And one can show that

‖µh(2nx)− 2µh(2n−1x)‖ ≤ |µ| · ‖h(2nx)− 2h(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all µ ∈ T 1 and all x ∈ A. So

‖h(2nµx)− µh(2nx)‖ ≤‖h(2nµx)− 2µh(2n−1x)‖+ ‖2µh(2n−1x)− µh(2nx)‖
≤ϕ(2n−1x, 2n−1x, 0, 0) + ϕ(2n−1x, 2n−1x, 0, 0)

for all µ ∈ T 1 and all x ∈ A. Thus 2−n‖h(2nµx)− µh(2nx)‖ → 0 as n →∞ for all
µ ∈ T 1 and all x ∈ A. Hence

(2.2) H(µx) = lim
n→∞

h(2nµx)
2n

= lim
n→∞

µh(2nx)
2n

= µH(x)

for all µ ∈ T 1 and all x ∈ A.

Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then | λ

M
| <

1
4

<

1 − 2
3

=
1
3
. By [5, Theorem 1], there exist three elements µ1, µ2, µ3 ∈ T 1 such

that 3
λ

M
= µ1 + µ2 + µ3. And H(x) = H(3 · 1

3
x) = 3H(

1
3
x) for all x ∈ A. So

H(
1
3
x) =

1
3
H(x) for all x ∈ A. Thus by (2.2)

H(λx) = H(
M

3
· 3 λ

M
x) = M ·H(

1
3
· 3 λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x + µ2x + µ3x) =

M

3
(H(µ1x) + H(µ2x) + H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) =

M

3
· 3 λ

M
H(x) = λH(x)

for all x ∈ A. Hence

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A. And H(0x) = 0 = 0H(x) for all x ∈ A.
So the unique additive mapping H : A → B is a C-linear mapping.

Since h(2nuy) = h(2nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · ,

(2.3) H(uy) = lim
n→∞

1
2n

h(2nuy) = lim
n→∞

1
2n

h(2nu)h(y) = H(u)h(y)

for all y ∈ A and all u ∈ U(A). By the additivity of H and (2.3),

2nH(uy) = H(2nuy) = H(u(2ny)) = H(u)h(2ny)
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for all y ∈ A and all u ∈ U(A). Hence

(2.4) H(uy) =
1
2n

H(u)h(2ny) = H(u)
1
2n

h(2ny)

for all y ∈ A and all u ∈ U(A). Taking the limit in (2.4) as n →∞, we obtain

(2.5) H(uy) = H(u)H(y)

for all y ∈ A and all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear
combination of unitary elements (see [6, Theorem 4.1.7]), i.e., x =

∑m
j=1 λjuj (λj ∈

C, uj ∈ U(A)),

H(xy) = H(
m∑

j=1

λjujy) =
m∑

j=1

λjH(ujy) =
m∑

j=1

λjH(uj)H(y)

= H(
m∑

j=1

λjuj)H(y) = H(x)H(y)

for all x, y ∈ A. Thus H : A → B is an algebra homomorphism.
By (2.3) and (2.5),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limn→∞
h(2ne)

2n
= H(e) is invertible,

H(y) = h(y)

for all y ∈ A.
It follows from (2.1) that

(2.6) H(x) = lim
n→∞

h(22nx)
22n

for all x ∈ A. Let x = y = 0 in (2.ii). Then we get

‖h({z, w})− {h(z), h(w)}‖ ≤ ϕ(0, 0, z, w)

for all z, w ∈ A. So
1

22n
‖h({2nz, 2nw})− {h(2nz), h(2nw)}‖(2.7)

≤ 1
22n

ϕ(0, 0, 2nz, 2nw) ≤ 1
2n

ϕ(0, 0, 2nz, 2nw)

for all z, w ∈ A. By (2.i), (2.6), and (2.7),

H({z, w}) = lim
n→∞

h(22n{z, w})
22n

= lim
n→∞

h({2nz, 2nw})
22n

= lim
n→∞

1
22n

{h(2nz), h(2nw)} = lim
n→∞

{h(2nz)
2n

,
h(2nw)

2n
}

= {H(z),H(w)}



534 Choonkil Park

for all z, w ∈ A.
By (2.i) and (2.iii), we get

H(u∗) = lim
n→∞

h(2nu∗)
2n

= lim
n→∞

h(2nu)∗

2n
= ( lim

n→∞

h(2nu)
2n

)∗

= H(u)∗

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combination
of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x∗) = H(
m∑

j=1

λju
∗
j ) =

m∑
j=1

λjH(u∗j ) =
m∑

j=1

λjH(uj)∗ = (
m∑

j=1

λjH(uj))∗

= H(
m∑

j=1

λjuj)∗ = H(x)∗

for all x ∈ A. So the mapping h = H : A → B is an involutive mapping.
Therefore, the mapping h : A → B is a Poisson C∗-algebra homomorphism, as

desired. �

Corollary 2.2. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nuy) =
h(2nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which there exist
constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + {z, w})− µh(x)− µh(y)− {h(z), h(w)}‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p),
‖h(2nu∗)− h(2nu)∗‖ ≤ 2θ

for all µ ∈ T 1, all x, y, z, w ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . Assume that

limn→∞
h(2ne)

2n
is invertible. Then the mapping h : A → B is a Poisson C∗-algebra

homomorphism.

Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply Theorem
2.1. �

Theorem 2.3. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nuy) =
h(2nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which there exists a
function ϕ : A4 → [0,∞) satisfying (2.i), (2.iii) and (2.iv) such that

(2.v) ‖h(µx+µy+{z, w})−µh(x)−µh(y)−{h(z), h(w)}‖ ≤ ϕ(x, y, z, w)

for µ = 1, i, and all x, y, z, w ∈ A. If h(tx) is continuous in t ∈ R for each fixed
x ∈ A, then the mapping h : A → B is a Poisson C∗-algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 in (2.v). By the same reasoning as in the proof of
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Theorem 2.1, there exists a unique additive mapping H : A → B satisfying (2.†).
The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A. By the same reasoning as in the proof of [12, Theorem], the additive
mapping H : A → B is R-linear.

Put y = z = w = 0 and µ = i in (2.v). By the same method as in the proof of
Theorem 2.1, one can obtain that

H(ix) = lim
n→∞

h(2nix)
2n

= lim
n→∞

ih(2nx)
2n

= iH(x)

for all x ∈ A. For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)
= (s + it)H(x) = λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping H : A → B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �

Theorem 2.4. Let h : A → B be a mapping satisfying h(2x) = 2h(x) for all x ∈ A
for which there exists a function ϕ : A4 → [0,∞) satisfying (2.i), (2.ii), (2.iii) and
(2.iv) such that

(2.‡) ‖h(2nuy)− h(2nu)h(y)‖ ≤ ϕ(u, y, 0, 0)

for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . Then the mapping h : A → B is a
Poisson C∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear mapping H : A → B satisfying (2.†).

By (2.‡) and the assumption that h(2x) = 2h(x) for all x ∈ A,

‖h(2nuy)− h(2nu)h(y)‖

=
1

4m
‖h(2m2nu · 2my)− h(2m2nu)h(2my)‖

≤ 1
4m

ϕ(2mu, 2my, 0, 0) ≤ 1
2m

ϕ(2mu, 2my, 0, 0),

which tends to zero as m →∞ by (2.i). So

h(2nuy) = h(2nu)h(y)
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for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . But by (2.1),

H(x) = lim
n→∞

1
2n

h(2nx) = h(x)

for all x ∈ A.
The rest of the proof is the same as in the proof of Theorem 2.1. �

Now we are going to investigate Poisson C∗-algebra homomorphisms between
Poisson C∗-algebras associated with the Jensen functional equation.

Theorem 2.5. Let h : A → B be a mapping satisfying h(0) = 0 and h(3nuy) =
h(3nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which there exists a
function ϕ : (A \ {0})4 → [0,∞) such that

(2.vi) ϕ̃(x, y, z, w) :=
∞∑

j=0

3−jϕ(3jx, 3jy, 3jz, 3jw) < ∞,

(2.vii) ‖2h(
µx + µy + {z, w}

2
)−µh(x)−µh(y)−{h(z), h(w)}‖ ≤ ϕ(x, y, z, w),

(2.viii) ‖h(3nu∗)− h(3nu)∗‖ ≤ ϕ(u, u, 0, 0)

for all µ ∈ T 1, all x, y, z, w ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . Assume that

limn→∞
h(3ne)

3n
is invertible. Then the mapping h : A → B is a Poisson C∗-algebra

homomorphism.

Proof. Put z = w = 0 and µ = 1 ∈ T 1 in (2.vii). It follows from Jun and Lee
Theorem [4, Theorem 1] that there exists a unique additive mapping H : A → B
such that

‖h(x)−H(x)‖ ≤ 1
3
(ϕ̃(x,−x, 0, 0) + ϕ̃(−x, 3x, 0, 0))

for all x ∈ A \ {0}. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
3n

h(3nx)

for all x ∈ A.
By the assumption, for each µ ∈ T 1,

‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖ ≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all x ∈ A \ {0}. And one can show that

‖µh(2 · 3n−1x) + µh(4 · 3n−1x)− 2µh(3nx)‖
≤ |µ| · ‖h(2 · 3n−1x) + h(4 · 3n−1x)− 2h(3nx)‖
≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)
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for all µ ∈ T 1 and all x ∈ A \ {0}. So

‖h(3nµx)− µh(3nx)‖

= ‖h(3nµx)− 1
2
µh(2 · 3n−1x)− 1

2
µh(4 · 3n−1x)

+
1
2
µh(2 · 3n−1x) +

1
2
µh(4 · 3n−1x)− µh(3nx)‖

≤ 1
2
‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖

+
1
2
‖µh(2 · 3n−1x) + µh(4 · 3n−1x)− 2µh(3nx)‖

≤ 2
2
ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all µ ∈ T 1 and all x ∈ A \ {0}. Thus 3−n‖h(3nµx)− µh(3nx)‖ → 0 as n → ∞
for all µ ∈ T 1 and all x ∈ A \ {0}. Hence

H(µx) = lim
n→∞

h(3nµx)
3n

= lim
n→∞

µh(3nx)
3n

= µH(x)

for all µ ∈ T 1 and all x ∈ A \ {0}.
By the same reasoning as in the proof of Theorem 2.1, the unique additive

mapping H : A → B is a C-linear mapping.
By a similar method to the proof of Theorem 2.1, one can show that the mapping

h : A → B is a Poisson C∗-algebra homomorphism. �

Corollary 2.6. Let h : A → B be a mapping satisfying h(0) = 0 and h(3nuy) =
h(3nu)h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which there exist
constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy + {z, w}

2
)− µh(x)− µh(y)− {h(z), h(w)}‖

≤ θ(||x||p + ||y||p + ||z||p + ||w||p),
‖h(3nu∗)− h(3nu)∗‖ ≤ 2θ

for all µ ∈ T 1, all x, y, z, w ∈ A\{0}, all u ∈ U(A) and n = 0, 1, 2, · · · . Assume that

limn→∞
h(3ne)

3n
is invertible. Then the mapping h : A → B is a Poisson C∗-algebra

homomorphism.

Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply Theorem
2.5. �

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen functional
equation.

Now we are going to prove the Cauchy–Rassias stability of Poisson C∗-algebra
homomorphisms in unital Poisson C∗-algebras associated with the Cauchy func-
tional equation.
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Theorem 2.7. Let h : A → B be a mapping satisfying h(0) = 0 for which there
exists a function ϕ : A4 → [0,∞) satisfying (2.i), (2.ii) and (2.iii) such that

(2.ix) ‖h(2nu · 2nv)− h(2nu)h(2nv)‖ ≤ ϕ(2nu, 2nv, 0, 0)

for all u, v ∈ U(A) and n = 0, 1, 2, · · · . Then there exists a unique Poisson C∗-
algebra homomorphism H : A → B satisfying (2.†).
Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear involutive mapping H : A → B satisfying (2.†).

By (2.ix),

1
4n
‖h(2nu · 2nv)− h(2nu)h(2nv)‖

≤ 1
4n

ϕ(2nu, 2nv, 0, 0) ≤ 1
2n

ϕ(2nu, 2nv, 0, 0),

which tends to zero by (2.i) as n →∞. By (2.1),

H(uv) = lim
n→∞

h(2nu · 2nv)
4n

= lim
n→∞

h(2nu)h(2nv)
4n

= lim
n→∞

h(2nu)
2n

h(2nv)
2n

= H(u)H(v)

for all u, v ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combination
of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(xv) = H(
m∑

j=1

λjujv) =
m∑

j=1

λjH(ujv) =
m∑

j=1

λjH(uj)H(v)

= H(
m∑

j=1

λjuj)H(v) = H(x)H(v)

for all x ∈ A and all v ∈ U(A). By the same method as given above, one can obtain
that

H(xy) = H(x)H(y)

for all x, y ∈ A. Thus H : A → B is an algebra ∗-homomorphism.
The rest of the proof is the same as in the proof of Theorem 2.1. �

One can obtain similar results to Theorem 2.7 for the Jensen functional equa-
tion and the Trif functional equation.

3. Homomorphisms between Poisson Banach modules over a unital Pois-
son C∗-algebra

Throughout this section, assume that A is a unital Poisson C∗-algebra with
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unitary group U(A), and that X and Y are left Poisson Banach A-modules with
norms || · || and ‖ · ‖, respectively.

Definition 3.1. A C-linear mapping H : X → Y is called a Poisson module
homomorphism if H : X → Y satisfies

H({{a, b}, x}) = {{a, b},H(x)},
H({a, b} · x) = {a, b} ·H(x)

for all a, b ∈ A and all x ∈ X.

We are going to prove the Cauchy–Rassias stability of homomorphisms in Pois-
son Banach modules over a unital Poisson C∗-algebra associated with the Cauchy
functional equation.

Theorem 3.1. Let h : X → Y be a mapping satisfying h(0) = 0 for which there
exists a function ϕ : X2 → [0,∞) such that

(3.i) ϕ̃(x, y) :=
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞,

(3.ii) ‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y),

(3.iii) ‖h({{u, v}, x})−{{u, v}, h(x)}‖ ≤ ϕ(x, x),

(3.iv) ‖h({u, v} ·x)−{u, v} ·h(x)‖ ≤ ϕ(x, x)

for all µ ∈ T 1, all x, y ∈ X and all u, v ∈ U(A). Then there exists a unique Poisson
module homomorphism H : X → Y such that

(3.v) ‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ X.

Proof. By the same reasoning as in the proof of Theorem 2.1, one can show that
there exists a unique C-linear mapping H : X → Y satisfying (3.v). The C-linear
mapping H : X → Y is given by

(3.1) H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ X.
By (3.iii),

‖ 1
2n

h(2n{{u, v}, x})− {{u, v}, 1
2n

h(2nx)}‖

=
1
2n
‖h({{u, v}, 2nx})− {{u, v}, h(2nx)}‖

≤ 1
2n

ϕ(2nx, 2nx),
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which tends to zero for all x ∈ X by (3.i). So

H({{u, v}, x}) = lim
n→∞

1
2n

h(2n{{u, v}, x})

= lim
n→∞

{{u, v}, 1
2n

h(2nx)} = {{u, v},H(x)}

for all x ∈ X and all u, v ∈ U(A). Since H is C-linear and {·, ·} is C-bilinear
and since each a ∈ A is a finite linear combination of unitary elements, i.e., a =∑m

j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H({{a, v}, x}) = H({{
m∑

j=1

λjuj , v}, x}) =
m∑

j=1

λjH({{uj , v}, x})

=
m∑

j=1

λj{{uj , v},H(x)} = {{
m∑

j=1

λjuj , v},H(x)} = {{a, v},H(x)}

for all x ∈ X, all a ∈ A and all v ∈ U(A). Similarly, one can show that

H({{a, b}, x}) = {{a, b},H(x)}

for all x ∈ X and all a, b ∈ A.
By (3.iv),

‖ 1
2n

h(2n{u, v} · x)− {u, v} · 1
2n

h(2nx)‖

=
1
2n
‖h({u, v} · 2nx)− {u, v} · h(2nx)‖

≤ 1
2n

ϕ(2nx, 2nx),

which tends to zero for all x ∈ X by (3.i). So

H({u, v} · x) = lim
n→∞

1
2n

h(2n{u, v} · x)

= lim
n→∞

({u, v} · 1
2n

h(2nx)) = {u, v} ·H(x)

for all x ∈ X and all u, v ∈ U(A). Since H is C-linear and {·, ·} is C-bilinear
and since each a ∈ A is a finite linear combination of unitary elements, i.e., a =∑m

j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H({a, v} · x) = H({
m∑

j=1

λjuj , v} · x) =
m∑

j=1

λjH({uj , v} · x)

=
m∑

j=1

λj{uj , v} ·H(x) = {
m∑

j=1

λjuj , v} ·H(x) = {a, v} ·H(x)
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for all x ∈ X, all a ∈ A and all v ∈ U(A). Similarly, one can show that

H({a, b} · x) = {a, b} ·H(x)

for all x ∈ X and all a, b ∈ A. Thus H : X → Y is a Poisson module homomorphism.
Therefore, there exists a unique Poisson module homomorphism H : X → Y

satisfying (3.v). �

Corollary 3.2. Let h : X → Y be a mapping satisfying h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p),
‖h({{u, v}, x})− {{u, v}, h(x)}‖ ≤ 2θ||x||p,

‖h({u, v} · x)− {u, v} · h(x)‖ ≤ 2θ||x||p

for all µ ∈ T 1, all x, y ∈ X and all u, v ∈ U(A). Then there exists a unique Poisson
module homomorphism H : X → Y such that

‖h(x)−H(x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 3.1. �

Theorem 3.3. Let h : X → Y be a mapping satisfying h(0) = 0 for which there
exists a function ϕ : X2 → [0,∞) satisfying (3.i), (3.iii) and (3.iv) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y)

for µ = 1, i, and all x, y ∈ X. If h(tx) is continuous in t ∈ R for each fixed x ∈ X,
then there exists a unique Poisson module homomorphism H : X → Y satisfying
(3.v).

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1. �

Now we are going to prove the Cauchy–Rassias stability of homomorphisms
in Poisson Banach modules over a unital Poisson C∗-algebra associated with the
Jensen functional equation.

Theorem 3.4. Let h : X → Y be a mapping satisfying h(0) = 0 for which there
exists a function ϕ : (X \ {0})2 → [0,∞) satisfying (3.iii) and (3.iv) such that

ϕ̃(x, y) :=
∞∑

j=0

3−jϕ(3jx, 3jy) < ∞,

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ ϕ(x, y),
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for all µ ∈ T 1 and all x, y ∈ X. Then there exists a unique Poisson module
homomorphism H : X → Y such that

‖h(x)−H(x)‖ ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ X \ {0}.
Proof. The proof is similar to the proofs of Theorems 2.5 and 3.1. �

Corollary 3.5. Let h : X → Y be a mapping satisfying h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p),

‖h({{u, v}, x})− {{u, v}, h(x)}‖ ≤ 2θ||x||p,
‖h({u, v} · x)− {u, v} · h(x)‖ ≤ 2θ||x||p

for all µ ∈ T 1, all x, y ∈ X \ {0}, and all u, v ∈ U(A). Then there exists a unique
Poisson module homomorphism H : X → Y such that

‖h(x)−H(x)‖ ≤ (3 + 3p)θ
3− 3p

||x||p

for all x ∈ X \ {0}.
Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 3.4. �

One can obtain a similar result to Theorem 3.3 for the Jensen functional equa-
tion.

References

[1] V. A. Faiziev, Th. M. Rassias and P. K. Sahoo, The space of (ψ, γ)-additive mappings
on semigroups, Trans. Amer. Math. Soc., 354(2002), 4455-4472.
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