Biideals in BCK/BCI-Bialgebras

Young Bae Jun

Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea

 $e ext{-}mail: skywine@gmail.com}$

ABSTRACT. The biideal structure in BCK/BCI-bialgebras is discussed. Relationships between sub-bialgebras, biideals and IC-ideals (and/or CI-ideals) are considered. Conditions for a biideal to be a sub-bialgebra are provided, and conditions for a subset to be a biideal (resp. IC-ideal, CI-ideal) are given.

1. Introduction

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers. Bialgebraic structures, for example, bisemigroups, bigroups, bigroupoids, biloops, birings, bisemirings, binear-rings, etc., are discussed in [4]. In [2], Jun et al. established the structure of BCK/BCI-bialgebras, and investigated some properties. In this paper, we introduce the notion of biideals, IC-ideals and/or CI-ideals in BCK/BCI-bialgebras. We discuss relationships between biideals, IC-ideals (and/or CI-ideals) and sub-bialgebras, and give conditions for a biideal to be a sub-bialgebra. We also provide conditions for a subset to be a biideal (resp. IC-ideal, CI-ideal).

2. Preliminaries

An algebra (X; *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

(I)
$$(\forall x, y, z \in X)$$
 $(((x * y) * (x * z)) * (z * y) = 0),$

(II)
$$(\forall x, y \in X) ((x * (x * y)) * y = 0),$$

(III)
$$(\forall x \in X) (x * x = 0),$$

(IV)
$$(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$$

If a BCI-algebra X satisfies the following identity:

(V)
$$(\forall x \in X) (0 * x = 0),$$

Received April 28, 2006, and, in revised form, June 15, 2008.

2000 Mathematics Subject Classification: 06F35, 03G25.

Key words and phrases: $\mathrm{BCK}/\mathrm{BCI}\text{-}\mathrm{bialgebras},$ sub-bialgebras, biideals. IC-ideal, CI-ideal.

then X is called a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x*y \in S$ for all $x,y \in S$. A subset H of a BCK/BCI-algebra X is called an ideal of X, written by $H \lhd X$, if it satisfies the following axioms:

- $0 \in H$,
- $(\forall x \in X) \ (\forall y \in H) \ (x * y \in H \Rightarrow x \in H).$

Any ideal H of a BCK/BCI-algebra X satisfies the following implication:

$$(\forall x \in X) (\forall y \in H) (x \le y \Rightarrow x \in H).$$

A subset A of a BCI-algebra X is called a *closed ideal* of X, denoted by $A \triangleleft_c X$, if it is an ideal of X such that $0 * x \in A$ for all $x \in A$. We refer the reader to the book [3] for further information regarding BCK/BCI-algebras.

3. Biideals of BCK/BCI-bialgebras

Definition 3.1 ([2]). Let $X = (X, *, \oplus, 0)$ be an algebra of type (2, 2, 0). Then $X = (X, *, \oplus, 0)$ is called a *BCK-bialgebra* (resp. *BCI-bialgebra*) if there exists two distinct proper subsets X_1 and X_2 of X such that

- (i) $X = X_1 \cup X_2$.
- (ii) $(X_1, *, 0)$ is a BCK-algebra (resp. BCI-algebra).
- (iii) $(X_2, \oplus, 0)$ is a BCK-algebra (resp. BCI-algebra).

Denote by $X = K(X_1) \uplus K(X_2)$ (resp. $X = I(X_1) \uplus I(X_2)$) the BCK-bialgebra (resp. BCI-bialgebra). If $(X_1, *, 0)$ is a BCK-algebra (resp. BCI-algebra) and $(X_2, \oplus, 0)$ is a BCI-algebra (resp. BCK-algebra), then we say that $X = (X, *, \oplus, 0)$ is a BCKI-bialgebra (resp. BCIK-bialgebra), and denoted by $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$).

Definition 3.2. Let $X = K(X_1) \uplus K(X_2)$ (or $X = K(X_1) \uplus I(X_2)$, $X = I(X_1) \uplus K(X_2)$, $X = I(X_1) \uplus I(X_2)$) be a BCK-bialgebra (or a BCKI-bialgebra, a BCIK-bialgebra). A subset $H(\neq \emptyset)$ of X is called a *biideal* of X if there exist distinct proper subsets H_1 and H_2 of X_1 and X_2 , respectively, such that $H = H_1 \cup H_2$ and $H_i \triangleleft X_i$ for i = 1, 2.

We illustrate this definition by the following examples.

Example 3.3. Let $X = \{0, a, b, c, d, x, y\}$ and consider two proper subsets $X_1 = \{0, a, b, c, d\}$ and $X_2 = \{0, a, b, x, y\}$ of X together with Cayley tables respectively

as follows:

*	0	a	b	c	d		\oplus	0	a	b	x	y
0	0	0	0	0	0	-	0	0	0	0	0	0
a	a	0	0	0	0		a	a	0	0	0	0
b	b	a	0	0	0		b	b	a	0	0	a
c	c	c	c	0	c		\boldsymbol{x}	x	\boldsymbol{x}	\boldsymbol{x}	0	x
d	d	d	d	d	0		y	y	y	y	y	0

Then $X = K(X_1) \uplus K(X_2)$. Note that $H_1 = \{0, a, b\} \lhd X_1$ and $H_2 = \{0, a, b, y\} \lhd X_2$. Hence $H = \{0, a, b, y\}$ is a biideal of X.

Example 3.4. Let $X = \{0, a, b, c, x\}$ and consider two proper subsets $X_1 = \{0, a, b, c\}$ and $X_2 = \{0, a, x\}$ of X together with Cayley tables respectively as follows:

Then $X = K(X_1) \uplus I(X_2)$, and $I_1 = \{0, c\} \lhd X_1$ and $I_2 = \{0, a\} \lhd X_2$. Therefore $I = \{0, a, c\}$ is a biideal of X.

Example 3.5. Let $X = \{0, a, b, c, d, e, f, g, x, y\}$ and consider two proper subsets $X_1 = \{0, a, b, c, d, e, f, g\}$ and $X_2 = \{0, a, x, y\}$ of X together with Cayley tables respectively as follows:

*	0	a	b	c	d	e	f	g					
0	0	0	0	0	d	d	d	\overline{d}					
a	a	0	0	0	e	d	d	d	\oplus	0	a	\boldsymbol{x}	
		b							0	0	0	\boldsymbol{x}	
		b							a	a	0	x	
d	d	d	d	d	0	0	0	0	\boldsymbol{x}			0	
e	e	d	d	d	a	0	0	0	y	y	x	a	
f		f											
g	g	f	e	d	c	b	a	0					

Then $X = I(X_1) \uplus I(X_2)$, and $I_1 = \{0, d\} \lhd X_1$ and $I_2 = \{0, a\} \lhd X_2$. Therefore $I = \{0, a, d\}$ is a biideal of X. Note that $I = \{0, a, d\}$ is not an ideal of $(X_1, *, 0)$ since $e * d = a \in I$ and $e \notin I$.

Example 3.6. Let $X = \mathbb{Q}^* \cup X_2$, where \mathbb{Q}^* is the set of all nonzero rational numbers and X_2 is a BCK-algebra under the operation \oplus that satisfies the following

implication:

$$(\forall x, y, z \in X_2) (x \oplus y \le z, y \le z \Rightarrow x \le z).$$

Note that $(\mathbb{Q}^*, \div, 1)$ is a BCI-algebra. Thus $X = I(\mathbb{Q}^*) \uplus K(X_2)$. Let $J = A(a) \cup \mathbb{Z}^*$, where $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ and $A(a) = \{x \in X_2 \mid x \leq a\}$ for a fixed element a of X_2 . Then A(a) and \mathbb{Z}^* are ideals of X_2 and \mathbb{Q}^* , respectively. Hence J is a biideal of X.

We provide conditions for a subset to be a biideal.

Theorem 3.7. Let $X = K(X_1) \uplus K(X_2)$ (resp. $X = K(X_1) \uplus I(X_2)$, $X = I(X_1) \uplus K(X_2)$, $X = I(X_1) \uplus I(X_2)$). If A is a nonempty subset of X such that $A \cap X_1 \triangleleft (X_1, *, 0)$ and $A \cap X_2 \triangleleft (X_2, \oplus, 0)$, then A is a biideal of X.

Proof. It is sufficient to show that $(A \cap X_1) \cup (A \cap X_2) = A$. Now,

$$(A \cap X_1) \cup (A \cap X_2) = ((A \cap X_1) \cup A) \cap ((A \cap X_1) \cup X_2)$$

= $(A \cap (X_1 \cup A)) \cap ((A \cup X_2) \cap X)$
= $A \cap (A \cup X_2)$
= A

Hence A is a biideal of X.

Definition 3.8 ([2]). Let $X = K(X_1) \uplus K(X_2)$ (resp. $X = K(X_1) \uplus I(X_2)$, $X = I(X_1) \uplus K(X_2)$, $X = I(X_1) \uplus I(X_2)$). A subset $H(\neq \emptyset)$ of X is called a *sub-bialgebra* of X if there exist subsets H_1 and H_2 of X_1 and X_2 , respectively, such that

- (i) $H_1 \neq H_2$ and $H = H_1 \cup H_2$,
- (ii) $(H_1, *, 0)$ is a subalgebra of $(X_1, *, 0)$,
- (iii) $(H_2, \oplus, 0)$ is a subalgebra of $(X_2, \oplus, 0)$.

Theorem 3.9. Let $X = K(X_1) \uplus K(X_2)$ be a BCK-bialgebra. Then any biideal of X is a sub-bialgebra of X.

Proof. Straightforward.
$$\Box$$

The following example shows that the converse of Theorem 3.9 is not true in general.

Example 3.10. Let $X = \{0, a, b, 1, 2, 3, 4\}$ and consider two proper subsets $X_1 = \{0, a, b\}$ and $X_2 = \{0, 1, 2, 3, 4\}$ of X together with Cayley tables respectively as follows:

	ı				\oplus					
*	0	a	b	•	0	0	0	0	0 0 1	0
0	0	0	0	•	1	1	0	0	0	0
a	a	$0 \\ a$	0		2	2	1	0	1	0
b	b	a	0		3	3	1	1	0	0
	'				4	4	1	1	0 1	0

Then $X = K(X_1) \uplus K(X_2)$. Note that $S_1 = \{0, a\}$ and $S_2 = \{0, 1, 2, 3\}$ are subalgebras of X_1 and X_2 , respectively. Hence $S = \{0, a, 1, 2, 3\}$ is a sub-bialgebra of X. But S_1 is not an ideal of X_1 since $b * a = a \in S_1$ and $b \notin S_1$. Also, S_2 is not an ideal of X_2 because $4 \oplus 2 = 1 \in S_2$ and $4 \notin S_2$. Therefore S is not a biideal of X.

Example 3.11. Let $X = \{0, a, x, y, 1, 2, 3, 4\}$ and consider two proper subsets $X_1 = \{0, 1, 2, 3, 4\}$ and $X_2 = \{0, a, x, y\}$ of X together with Cayley tables respectively as follows:

*	0	1	2	3	4	\bigcirc	0	•	x	21
0	0	0	0	0	0		0	u	\boldsymbol{x}	<u>y</u>
1	1	0	0	1	0	0	0	0	x x 0 a	x
1	1	U	U	1	U	a	а	Ω	r	r
2	2	1 3	0	2	0	α	a	U		
9	9	9	9	Ω	9	x	x	x	0	U
0	ა	9	9	U	0	21	21	r	a	Ω
4	4	4	4	4	0	g	g	a	u	U

Then $X = K(X_1) \uplus I(X_2)$. Note that $H_1 = \{0, 1, 2\}$ is a subalgebra of X_1 which is an ideal of X_1 , and $H_2 = \{0, a, x\}$ is a subalgebra of X_2 but not an ideal of X_2 since $y \oplus a = x \in H_2$ and $y \notin H_2$. Hence $H = \{0, 1, 2, a, x\}$ is a sub-bialgebra of X which is not a biideal of X.

Note that any biideal in a BCK-bialgebra $X = K(X_1) \uplus K(X_2)$ is a sub-bialgebra (see Theorem 3.9). But, in a BCKI-bialgebra $X = K(X_1) \uplus I(X_2)$, any biideal is not a sub-bialgebra in general as seen in the following example.

Example 3.12. In Example 3.6, we know that \mathbb{Z}^* is an ideal of \mathbb{Q}^* , but not a subalgebra. So, we know that any biideal is not a sub-bialgebra in $X = K(X_1) \uplus I(X_2)$, $X = I(X_1) \uplus K(X_2)$, or $X = I(X_1) \uplus I(X_2)$.

Example 3.13. Let $X = Y \cup \mathbb{Z}$, where $Y = \{0, a, b, c, d\}$ is a BCK-algebra with the following Cayley table:

*	0	a	b	c	d
0	0	$\begin{matrix} 0 \\ 0 \\ b \\ c \\ d \end{matrix}$	0	0	0
a	a	0	a	0	0
b	b	b	0	b	0
c	c	c	c	0	c
d	d	d	d	d	0

Note that $(\mathbb{Z}, -, 0)$ is a BCI-algebra. Hence $X = K(Y) \uplus I(\mathbb{Z})$. It is easy to show that $G_1 = \{0, a, c\}$ is an ideal of Y which is also a subalgebra of Y, and the set $G_2 = \{x \in \mathbb{Z} \mid 0 \le x\}$ is an ideal of \mathbb{Z} which is not a subalgebra. Hence $G := G_1 \cup G_2$ is a biideal of X which is not a sub-bialgebra of X.

Definition 3.14. Let $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$). A subset

 $A(\neq \emptyset)$ of X is called an *IC-ideal* (resp. *CI-ideal*) of X if there exist distinct proper subsets A_1 and A_2 of X_1 and X_2 , respectively, such that

- (i) $A = A_1 \cup A_2$,
- (ii) $A_1 \triangleleft X_1$ and $A_2 \triangleleft_c X_2$ (resp. $A_1 \triangleleft_c X_1$ and $A_2 \triangleleft X_2$).

Note that any IC-ideal (resp. CI-ideal) in $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$) is a biideal, but the converse is not true in general.

Example 3.15. (1) In Example 3.13, $G := G_1 \cup G_2$ is a biideal which is not an IC-ideal since G_2 is not closed.

(2) In Example 3.5, $I = \{0, a, d\}$ is an IC-ideal of X.

Theorem 3.16. Let $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$), where $|X_2| < \infty$ (resp. $|X_1| < \infty$). Then every biideal of X is an IC-ideal (resp. CI-ideal) of X.

Proof. Assume that $X = K(X_1) \uplus I(X_2)$ and $|X_2| = n < \infty$. Let A be a biideal of X. Then there are distinct subsets A_1 and A_2 of X_1 and X_2 , respectively, so that $A = A_1 \cup A_2$ and $A_i \triangleleft X_i$ for i = 1, 2. For every $a, b \in A_2$ and $k \in \mathbb{N}$, denote

$$a \oplus b^k = (\cdots((a \oplus \underline{b}) \oplus b) \oplus \cdots) \oplus \underline{b}.$$
 k -times

Now, for each $a \in A_2$, consider n + 1 elements as follows:

$$0, 0 \oplus a, 0 \oplus a^2, \cdots, 0 \oplus a^n$$
.

Since $|X_2| = n$, it follows that two of them must be equal so that there exist $r, s \in \mathbb{N}$ such that $s < r \le n$ and $0 \oplus a^r = 0 \oplus a^s$. Then

$$0 = (0 \oplus a^r) \oplus (0 \oplus a^s) = ((0 \oplus a^s) \oplus a^{r-s}) \oplus (0 \oplus a^s) = 0 \oplus a^{r-s} \in A_2,$$

and so $0 \oplus a \in A_2$ since $A_2 \triangleleft X_2$. Thus $A_2 \triangleleft_c X_2$. Therefore A is an IC-ideal of X. Similarly we get desired result for the case $X = I(X_1) \uplus K(X_2)$ with $|X_1| < \infty$. \square

Corollary 3.17. Let $X = I(X_1) \uplus I(X_2)$, where $|X_1| < \infty$ and $|X_2| < \infty$. Then every biideal of X is a CC-ideal of X.

Theorem 3.18. Let $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$). Then any IC-ideal (resp. CI-ideal) of X is a sub-bialgebra of X.

Proof. It is straightforward because any closed ideal of a BCI-algebra is a subalgerba, and any ideal of a BCK-algebra is a subalgebra. \Box

The following example shows that the converse of Theorem 3.18 is not true in general.

Example 3.19. Let $X = \{0, a, b, 1, 2, 3, 4\}$ and consider two proper subsets $X_1 =$

 $\{0,1,2,3,4\}$ and $X_2=\{0,a,b\}$ of X together with Cayley tables respectively as follows:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	1	1
2	2	2	0	2	2
3	3	3	3	0	3
4	4	4	4	0 4	0

Then $X = K(X_1) \uplus I(X_2)$, and $H_1 = \{0, 1, 2, 4\}$ is a subalgebra of X which is also an ideal. But $H_2 = \{0, b\}$ is a subalgebra of X_2 which is not an ideal of X_2 . Hence $H := \{0, 1, 2, 4, b\}$ is a sub-bialgebra of X which is not an IC-ideal.

Corollary 3.20. Let $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$), where $|X_2| < \infty$ (resp. $|X_1| < \infty$). Then every biideal of X is a sub-bialgebra of X.

Theorem 3.21. Let $X = K(X_1) \uplus I(X_2)$ in which X_2 satisfies the following inequality:

$$(\forall x \in X_2) (0 \oplus x \le x).$$

Then any biideal of X is an IC-ideal of X and hence is a sub-bialgebra of X.

Proof. Let A be a biideal of X. Then $A=A_1 \uplus A_2$ and $A_i \lhd X_i, \ i=1,2$, for some $A_1 \subseteq X_1$ and $A_2 \subseteq X_2$ with $A_1 \neq A_2$. Let $y \in A_2$. Since $0 \oplus y \leq y$ by assumption, it follows that $0 \oplus y \in A_2$ so that $A_2 \lhd_c X_2$. Hence A is an IC-ideal of X. \square

Theorem 3.22. Let $X = K(X_1) \uplus I(X_2)$ (resp. $X = I(X_1) \uplus K(X_2)$) and let A be a subset of X such that $A \cap X_1 \lhd (X_1, *, 0)$ and $A \cap X_2 \lhd_c (X_2, \oplus, 0)$ (resp. $A \cap X_1 \lhd_c (X_1, *, 0)$ and $A \cap X_2 \lhd (X_2, \oplus, 0)$). Then A is an IC-ideal (resp. CI-ideal) of X.

Proof. Similar to the proof of Theorem 3.7.

Acknowledgment. The author is highly grateful to referees for their valuable comments and suggestions helpful in improving this paper.

References

- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23(1)(1978), 1-26.
- [2] Y. B. Jun, M. A. Öztürk and E. H. Roh, BCK/BCI-bialgebras, Sci. Math. Jpn., 64(3)(2006), 595-600, e2006, 903-908.
- [3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.

[4] W. B. Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, 2003.

(http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm)