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Abstract. In 1981, Sen [4] have introduced the concept of Γ-semigroups. We have

known that Γ-semigroups are a generalization of semigroups. In this paper, we introduce

the concepts of the extensions of s-prime ideals, prime ideals, s-semiprime ideals and

semiprime ideals in Γ-semigroups and characterize the relationship between the extensions

of ideals and some congruences in Γ-semigroups.

1. Preliminaries

Let M and Γ be any two nonempty sets. M is called a Γ-semigroup [5], [7] if
for all a, b, c ∈ M and γ, µ ∈ Γ, we have (i) aγb ∈ M and (ii) (aγb)µc = aγ(bµc). A
Γ-semigroup M is called a commutative Γ-semigroup if aγb = bγa for all a, b ∈ M
and γ ∈ Γ. A nonempty subset K of a Γ-semigroup M is called a sub-Γ-semigroup
of M if aγb ∈ K for all a, b ∈ K and γ ∈ Γ.

For examples of Γ-semigroups, see [1], [3], [5], [6], [7].

Let S be a semigroup and Γ = {1}. We define a mapping S × Γ× S −→ S by
a1b = ab for all a, b ∈ S. Then S is a Γ-semigroup. Hence we have known that
Γ-semigroups are a generalization of semigroups.

For nonempty subsets A and B of a Γ-semigroup M and a nonempty subset
Γ′ of Γ, let AΓ′B := {aγb : a ∈ A, b ∈ B and γ ∈ Γ′}. If A = {a}, then we also
write {a}Γ′B as aΓ′B, and similarly if B = {b} or Γ′ = {γ}. A nonempty subset
I of a Γ-semigroup M is called an ideal of M if MΓI ⊆ I and IΓM ⊆ I. The
intersection of all ideals of a Γ-semigroup M containing a nonempty subset A of M
is the ideal of M generated by A, and will be denoted by I(A). If A = {x}, then we
also write I({x}) as I(x). An ideal I of a Γ-semigroup M is called an s-prime ideal
[3] of M if for any a, b ∈ M and γ ∈ Γ, aγb ∈ I implies a ∈ I or b ∈ I. Equivalently,
for any A,B ⊆ M and γ ∈ Γ, AγB ⊆ I implies A ⊆ I or B ⊆ I. An ideal I of a
Γ-semigroup M is called a prime ideal of M if for any a, b ∈ M,aΓb ⊆ I implies
a ∈ I or b ∈ I. Equivalently, for any A,B ⊆ M,AΓB ⊆ I implies A ⊆ I or B ⊆ I.
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An ideal I of a Γ-semigroup M is called an s-semiprime ideal of M if for any a ∈ M
and γ ∈ Γ, aγa ∈ I implies a ∈ I. Equivalently, for any A ⊆ M and γ ∈ Γ, AγA ⊆ I
implies A ⊆ I. An ideal I of a Γ-semigroup M is called a semiprime ideal of M
if for any a ∈ M,aΓa ⊆ I implies a ∈ I. Equivalently, for any A ⊆ M,AΓA ⊆ I
implies A ⊆ I. Hence we have the following statements for Γ-semigroups.

(1) Every s-prime ideal is a prime ideal.
(2) Every prime ideal is a semiprime ideal.
(3) Every s-prime ideal is an s-semiprime ideal.
(4) Every s-semiprime ideal is a semiprime ideal.

For a Γ-semigroup M , let

P (M) := {A : A is a prime ideal of M},
SP (M) := {A : A is an s-prime ideal of M}.

Then ∅ 6= SP (M) ⊆ P (M). A sub-Γ-semigroup F of a Γ-semigroup M is called
a filter [3] of M if for any a, b ∈ M and γ ∈ Γ, aγb ∈ F implies a, b ∈ F . The
intersection of all filters of a Γ-semigroup M containing a nonempty subset A of
M is the filter of M generated by A. For A = {x}, let n(x) denote the filter of
M generated by {x}. An equivalence relation σ on a Γ-semigroup M is called a
congruence [2], [6] if for any a, b, c ∈ M and γ ∈ Γ, (a, b) ∈ σ implies (aγc, bγc) ∈ σ
and (cγa, cγb) ∈ σ. Let σ be a congruence on a Γ-semigroup M and M/σ := {(x)σ :
x ∈ M}. We define (x)σγ(y)σ = (xγy)σ for all (x)σ, (y)σ ∈ M/σ and γ ∈ Γ. It
is easy to verify that the definition is well-defined and M/σ is a Γ-semigroup. A
congruence σ on a Γ-semigroup M is called a semilattice congruence [8] if for all
a, b ∈ M and γ ∈ Γ, (aγb, bγa) ∈ σ and (aγa, a) ∈ σ. For an ideal I of a Γ-
semigroup M and A ⊆ M , the set < A, I >:= {x ∈ M : AΓx ⊆ I} is called the
extension of I by A. If A = {a}, then we also write < {a}, I > as < a, I >. For an
ideal I of a Γ-semigroup M , we define equivalence relations on M as follows:

σI := {(x, y) ∈ M ×M : x, y ∈ I or x, y 6∈ I},
φI := {(x, y) ∈ M ×M :< x, I >=< y, I >},
n := {(x, y) ∈ M ×M : n(x) = n(y)}.

Example 1.([3]) Let M = {a, b, c, d} and Γ = {γ} with the multiplication defined
by

xγy =
{

b if x, y ∈ {a, b},
c otherwise.

Then M is a Γ-semigroup. We can easily get all ideals of M as follows:

P1 = M,P2 = {c, d}, P3 = {b, c}, P4 = {c}, P5 = {a, b, c}, P6 = {b, c, d}.
It is easy to see that P1 and P2 are s-prime ideals of M , so P1 and P2 are semiprime
ideals of M . Let

σ1 = M ×M,

σ2 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)}.
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It is easy to see that σ1 and σ2 are semilattice congruences on M .

Example 2. For n ∈ {1, 2}, let M = {n, n + 1, n + 2, · · · } and Γ = {−n}. Then
M is a Γ-semigroup under usual addition. Let I = {2n, 2n + 1, 2n + 2, · · · }. It is
easy to verify that I is a semiprime ideal of M and σ = {(n, n)} is a semilattice
congruence on M .

The following theorem is obtained similarly in [3] and the following lemmas will
be used frequently in this paper.

Theorem 1.1. If M is a Γ-semigroup, then

n =
⋂

I∈SP (M)

σI .

In this paper, we consider the ideal extensions in a commutative Γ-semigroup.
From now on, M stands for a commutative Γ-semigroup. The next two lemmas are
easy to verify.

Lemma 1.2. If A is a subset of M, then I(A) = A ∪MΓA.

Lemma 1.3. Let I be an ideal of M and A ⊆ B ⊆ M . Then < B, I >⊆< A, I >.

Lemma 1.4. Let I be an ideal of M, A ⊆ M and γ ∈ Γ. Then we have the following
statements:

(a) < A, I > is an ideal of M.
(b) I ⊆< A, I >⊆< AΓA, I >⊆< AγA, I >.
(c) If A ⊆ I, then < A, I >= M .

Proof. (a) Let x ∈< A, I >, y ∈ M and γ ∈ Γ. Then AΓ(xγy) = (AΓx)γy ⊆
IΓM ⊆ I, so xγy ∈< A, I >. Hence < A, I > is an ideal of M .

(b) If x ∈ I, then AΓx ⊆ MΓI ⊆ I. Thus x ∈< A, I >. If x ∈< A, I >, then
(AΓA)Γx = AΓ(AΓx) ⊆ MΓI ⊆ I. Thus x ∈< AΓA, I >. If x ∈< AΓA, I >,
then (AγA)Γx ⊆ (AΓA)Γx ⊆ I. Thus x ∈< AγA, I >. Hence I ⊆< A, I >⊆<
AΓA, I >⊆< AγA, I >.

(c) Let A ⊆ I and x ∈ M . Then AΓx ⊆ IΓM ⊆ I, so x ∈< A, I >. Hence
< A, I >= M . �

Lemma 1.5. Let I be an ideal of M and A ⊆ M . Then

< A, I >=
⋂
a∈A

< a, I >=< A \ I, I > .

Proof. By Lemma 1.3, we have < A, I >⊆
⋂
a∈A

< a, I >. Let x ∈
⋂
a∈A

< a, I >.

Then aΓx ⊆ I for all a ∈ A, so AΓx ⊆ I. Thus x ∈< A, I >, so
⋂
a∈A

< a, I >⊆<



588 Manoj Siripitukdet and Aiyared Iampan

A, I >. Hence < A, I >=
⋂
a∈A

< a, I >. By Lemma 1.4 (c), we have < A, I >=⋂
a∈A

< a, I >=< A \ I, I >. �

Lemma 1.6. Let I be an ideal of M. Then I is a prime ideal of M if and only
if < A, I >= I for all A 6⊆ I.

Proof. Assume that I is a prime ideal of M and A 6⊆ I. Let x ∈< A, I >. Then
AΓx ⊆ I. By hypothesis and A 6⊆ I, x ∈ I. Thus < A, I >⊆ I. By Lemma 1.4 (b),
< A, I >= I.

Conversely, assume that < A, I >= I for all A 6⊆ I. Let A,B ⊆ M be such
that AΓB ⊆ I and A 6⊆ I. Then B ⊆< A, I >= I. Hence I is a prime ideal of M .
�

We can easily prove the last lemma.

Lemma 1.7. Let A and B be two nonempty subfamilies of P (M) and SP (M),
respectively. Then we have the following statements:

(a)
⋂

P∈A
P is a semiprime ideal of M if

⋂
P∈A

P 6= ∅.

(b)
⋃

P∈B
P is a prime ideal of M.

(c)
⋂

P∈B
P is an s-semiprime ideal of M if

⋂
P∈B

P 6= ∅.

(d)
⋃

P∈B
P is an s-prime ideal of M.

2. Main theorems

In this section, we give some characterizations of the relationship between the
extensions of ideals and some congruences in Γ-semigroups.

Theorem 2.1. Let P be a prime ideal of M and A ⊆ M . Then < A, P > is
a prime ideal of M. Furthermore, < A,

⋂
P∈P (M)

P > is a semiprime ideal of M if⋂
P∈P (M)

P 6= ∅.

Proof. If A ⊆ P , then it follows from Lemma 1.4 (c) that < A, P >= M . If A 6⊆ P ,
then it follows from Lemma 1.6 that < A, P >= P . Hence < A, P > is a prime
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ideal of M . Now,

x ∈< A,
⋂

P∈P (M)

P > ⇔ AΓx ⊆
⋂

P∈P (M)

P

⇔ AΓx ⊆ P for all P ∈ P (M)
⇔ x ∈< A, P > for all P ∈ P (M)

⇔ x ∈
⋂

P∈P (M)

< A, P > .

Hence

< A,
⋂

P∈P (M)

P >=
⋂

P∈P (M)

< A,P > .

It follows from Lemma 1.7 (a) that < A,
⋂

P∈P (M)

P > is a semiprime ideal of M . �

Theorem 2.2. Let A,B ⊆ M and A ⊆ MΓA. Then I(A) ⊆ I(B) if and only if
for every ideal J of M, < B, J >⊆< A, J >.

Proof. Assume that I(A) ⊆ I(B). Let J be an ideal of M and x ∈< B, J >. By
Lemma 1.2, we have A ⊆ I(B) = B ∪MΓB. For any a ∈ A, if a = yαb for some
y ∈ M, b ∈ B and α ∈ Γ, then aγx = (yαb)γx = yα(bγx) ∈ MΓJ ⊆ J for all
γ ∈ Γ. Hence aγx ∈ J for all γ ∈ Γ, so x ∈< a, J >. If a = b for some b ∈ B, then
aγx = bγx ∈ J for all γ ∈ Γ. Hence aγx ∈ J for all γ ∈ Γ, so x ∈< a, J >. Therefore
< B, J >⊆

⋂
a∈A

< a, J >. It follows from Lemma 1.5 that < B, J >⊆< A, J >.

Conversely, assume that < B, J >⊆< A, J > for all ideal J of M . Then
< B, I(B) >⊆< A, I(B) >. Since B ⊆ I(B), it follows from Lemma 1.4 (c)
that < B, I(B) >= M . Thus < A, I(B) >= M , so MΓA ⊆ I(B). Hence
A ⊆ MΓA ⊆ I(B). This implies that I(A) ⊆ I(B). �

Theorem 2.3. If I is an s-semiprime ideal of M, then φI is a semilattice congru-
ence on M.

Proof. Let (x, y) ∈ φI , c ∈ M and γ ∈ Γ. Then < x, I >=< y, I >. Thus

a ∈< xγc, I > ⇔ (xγc)Γa ⊆ I

⇔ xΓ(cγa) ⊆ I

⇔ cγa ∈< x, I >

⇔ cγa ∈< y, I >

⇔ yΓ(cγa) ⊆ I

⇔ (yγc)Γa ⊆ I

⇔ a ∈< yγc, I > .
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Hence (xγc, yγc) ∈ φI . Similarly, we can show that (cγx, cγy) ∈ φI . Hence φI is a
congruence on M . Let x ∈ M and γ ∈ Γ. Then

a ∈< xγx, I > ⇒ (xγx)Γa ⊆ I

⇒ (xγxΓa)Γa ⊆ IΓM ⊆ I

⇒ (xΓa)γ(xΓa) ⊆ I

⇒ xΓa ⊆ I

⇒ a ∈< x, I > .

Thus < xγx, I >⊆< x, I >. By Lemma 1.4 (b), < x, I >⊆< xγx, I >. Hence
< xγx, I >=< x, I >, so (xγx, x) ∈ φI . Therefore φI is a semilattice congruence on
M . �

Theorem 2.4. If I is an s-prime ideal of M, then φI = σI and n ⊆ φI .

Proof. Let (x, y) ∈ φI . Then < x, I >=< y, I >. Suppose that (x, y) 6∈ σI .
Without loss of generality, we may assume that x ∈ I but y 6∈ I. By Lemma 1.4 (c)
and Lemma 1.6, we have < x, I >= M and < y, I >= I. Thus I = M , so y 6∈ M .
This is a contradiction. Hence (x, y) ∈ σI , so φI ⊆ σI . Let (x, y) ∈ σI . If x ∈ I,
then y ∈ I. By Lemma 1.4 (c), < x, I >= M =< y, I >. If x 6∈ I, then y 6∈ I.
By Lemma 1.6, < x, I >= I =< y, I >. Hence (x, y) ∈ φI , so σI ⊆ φI . Therefore
φI = σI . It follows from Theorem 1.1 that

n =
⋂

J∈SP (M)

σJ =
⋂

J∈SP (M)

φJ ⊆ φI .

Hence the proof is completed. �
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