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ABSTRACT. Motivated and inspired by ideas due to Matsushida and Takahashi [J. Approz.
Theory 134(2005), 257-266] and Martinez-Yanes and Xu [Nonlinear Anal. 64(2006), 2400-
2411], we prove some strong convergence theorems of modified iteration processes for a pair
(or finite family) of relatively nonexpansive mappings in Banach spaces, which improve
and extend the corresponding results of Matsushida and Takahashi and Martinez-Yanes
and Xu in Banach and Hilbert spaces, repectively.

1. Introduction

Let C' be a nonempty closed convex subset of a real Banach space X and let
T :C — C be a mapping. We say that T is a Lipschitzian mapping if, for each
n > 1, there exists a constant k,, > 0 such that

IT"2 = T"y|| < knllz =yl

for all x,y € C. In particular, a Lipschitzian mapping T is called nonexpansive
if k, = 1 for all n > 1 and asymptotically nonexpansive [9] if lim, o k, = 1,
respectively. A point € C' is a fized point of T provided Tx = z. Denote by F(T')
the set of fixed points of T; that is, F(T) = {x € C : Tx = x}. A point pin C is
said to be an asymptotic fized point of T [23] if C' contains a sequence {x,,} which
converges weakly to p such that lim,_ (2, — Tx,) = 0. The set of asymptotic
fixed points of T will be denoted by F(T).

Let X be a smooth Banach space and let X* be the dual of X. The function
¢: X x X — R is defined by

$w,y) = ||z = 2(z, Jy) + Iyl

for all z,y € X, where J denotes the normalized duality mapping from X to X*.
A mappings T : C — C is called relatively nonexpansive [18] if F(T) is nonempty,
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F(T) = F(T) and ¢(p, Tx) < ¢(p, z) for all z € C, p € F(T); see also [3], [4], [5]. Tt
is known in [18] that if X is strictly convex and T is relatively nonexpansive, then
F(T) is closed and convex.

Construction of approximating fixed points of nonexpansive mappings is an
important subject in the theory of nonexpansive mappings and its applications in
a number of applied areas, in particular, in image recovery and signal processing.
However, the sequence {T™z} of iterates of the mapping T' at a point z € C may
not converge even in the weak topology. Thus three averaged iteration methods
often prevail to approximate a fixed point of a nonexpansive mapping 7. The first
one is introduced by Halpern [10] and is defined as follows: Take an initial guess
xg € C arbitrarily and define {z,,} recursively by

(1.1) Tpy1 = tpxo + (1 —t,)Tan, n >0,

where {t,} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration process [16]
which is defined as

(1.2) Tnt1 = QpZp + (1 — ap)Tx,, n>0,

where the initial guess xz( is taken in C arbitrarily and the sequence {«,} is in the
interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process [11]
which is defined recursively by

Yn = BnTn + (]— - ﬂn)Txnv
(1.3) { e e, 20,

where the initial guess z is taken in C arbitrarily and {a,,} and {3, } are sequences
in the interval [0,1]. By taking 8, = 1 for all n > 0 in (1.3), Ishikawa’s iteration
process reduces to the Mann’s iteration process (1.2). It is known in [6] that the
process (1.2) may fail to converge while the process (1.3) can still converge for a
Lipschitz pseudo-contractive mapping in a Hilbert space.
In general, the iteration process (1.1) has been proved to be strongly convergent
in both Hilbert spaces [10], [15], [26] and uniformly smooth Banach spaces [20], [24],
[29], while Mann’s iteration (1.2) has only weak convergence even in a Hilbert space
[8].
Attempts to modify the Mann iteration method (1.2) or the Ishikawa iteration
method (1.3) so that strong convergence is guaranteed have recently been made.
Nakajo and Takahashi [19] proposed the following modification of Mann’s iteration
process (1.2) for a single nonexpansive mapping T with F(T') # () in a Hilbert space
H:
o € C chosen arbitrarily,
Yn = QpTp + (]- - Ckn)TZL'n,

(1.4) Cn={2€C:lyn — 2l < llzn — 2|},
Qn={2€C:(xy,— 2,230 —xp) >0},
ZTnt1 = Po,nq., o,
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where Pk denotes the metric projection from H onto a closed convex subset K of H.
They proved that if the sequence {a,, } is bounded above from one, then the sequence
{x,} generated by (1.4) converges strongly to Pp(r)zo. A recent extension of the
process (1.4) to asymptotically nonexpansive mappings can be found in [14]. See
also [13] for another modification of the Mann iteration process (1.2) which also has
strong convergence. Very recently, Martinez-Yanez and Xu [17] generalized Nakajo
and Takahashi’s iteration process (1.4) to the following modification of Ishikawa’s
iteration process (1.3) for a nonexpansive mapping 7' : C' — C with F(T) # () in a
Hilbert space H:

xg € C chosen arbitrarily,

Yn = QnTyp + (1 - an)TZna

Zn = BpTp + (1 - ﬁn)Txnv

Cp={v € C: |lyn —v|* < anllzy — v]* + (1 — an)llzn — v[*},
Qn={vel: (x, —v,z, —x0) <0},

Tn41 = PC,LmQ,ﬂCm

(1.5)

and proved that the sequence {z,,} generated by (1.5) converges strongly to Pp(r)o
provided the sequence {a,} is bounded above from one and lim, o, 5, = 1.

On the other hand, Matsushita and Takahashi [18] extended Nakajo and Taka-
hashi’s iteration process (1.4) to the following modification of Mann’s iteration pro-
cess (1.2) using the hybrid method in mathematical programming for a relatively
nonexpansive mapping 7' : C — C in a uniformly convex and uniformly smooth
Banach space X:

xg € C chosen arbitrarily,
Yo = J HanJr, + (1 — an)JTxy,),

(1.6) H,={2€C:9(2,yn) < d(2,20)},
W,=4{2z€C:{x,— 2z Jxg— Ja,) > 0},
Tni41 = HHann Zo,

and they also proved that if the sequence {a,} is a sequence in [0,1) and
lim sup,,_, ., @, < 1, then the sequence {x,} generated by (1.6) converges strongly
to [T(r) zo, where [, denotes the generalized projection from X onto a closed
convex subset K of X.

The purpose of this paper, motivated and inspired by ideas due to Martinez-
Yanez and Xu [17] and Matsushita and Takahashi [18], is to prove some strong
convergence theorems for a pair (or finite family) of relatively nonexpansive map-
pings in Banach spaces.

2. Preliminaries

Let X be a real Banach space with norm || - || and let X* be the dual of X.
Denote by (-,-) the duality product. The normalized duality mapping from X to
X* is defined by

Jo={z" € X" : (z,2%) = ||a|* = [|l="[|"}
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for x € X. When {x,} is a sequence in X, we denote the strong convergence of
{z,} to z € X by z, — z and the weak convergence by =, — x. We also denote
the weak w-limit set of {z,} by

Wy (zn) ={z: JzpH, — x}.

A Banach space X is said to be strictly convez if ||(z + y)/2| < 1 for all
x,y € X with ||z|]| = |ly|| = 1 and z # y. Tt is also said to be uniformly convex if
|2 — yn|| — O for any two sequences {x,}, {y,} in X such that ||z,| = ||y.|]| =1
and ||(z5 +yn)/2[| — 1.

Let U = {z € X : ||z|]| = 1} be the unit sphere of X. Then the Banach space
X is said to be smooth provided

t _
ety = e

(21) t—0 t

exists for each x, y € U. It is also said to be uniformly smooth if the limit in (2.1)
is attained uniformly for z,y € U. It is well known that if X is smooth, then the
duality mapping J is single-valued. It is also known that if X is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of X. Some
properties of the duality mapping have been given in [7], [22], [25]. A Banach space
X is said to have the Kadec-Klee property if a sequence {x, } of X satisfying that
xn = x € X and ||z,|| — ||z||, then z, — x. It is known that if X is uniformly
convex, then X has the Kadec-Klee property; see [7], [25] for more details.

Let X be a smooth Banach space. Recall that the function ¢ : X x X — R is
defined by

$(x,y) = ll2|* = 2(z, Ty) + |yl
for all z,y € X. It is obvious from the definition of ¢ that

(2.2) (Il = ly)* < ¢z, y) < (ll=ll + llyl)®

for all x,y € X. Further, we have that for any z,y,z € X,

(2.3) o(x,y) = p(x, 2) + (2, y) + 2{x — 2, Jz — Jy).

In particular, it is easy to see that if X is strictly convex, for z,y € X, ¢(y,z) =
0 if and only if y = x (see, for example, Remark 2.1 of [18]).

Let X be a reflexive, strictly convex and smooth Banach space and let C' be a
nonempty closed convex subset of X. Then, for any z € X, there exists a unique
element & € C such that

d(Z,2) = inf ¢(z,x).

zeC

Then a mapping [[ : X — C defined by [[o2 = & is called the generalized
projection (see [1], [2], [12]). In Hilbert spaces, notice that the generalized projection
is clearly coincident with the metric projection.
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The following result is well known (see, for example, [1], [2], [12]).

Proposition 2.1 ([1], [2], [12]). Let K be a nonempty closed convexr subset of a
real Banach space X and let x € X.

(a) If X is smooth, then, & = [[x « if and only if (T—y,Jx—Jx) > 0 fory € K.

(b) If X is reflexive, strictly convex and smooth, then ¢(y, [ ) +o([[x z,x) <
oy, x) for ally € K.

Lemma 2.2. Let X be a smooth Banach space. Then, for any fized x € X, ¢(-, x)
1s weakly lower semicontinuous on X; moreover, it is continuous and convex on X .

Proof. Fix € X and let z,, = p € X. Clearly, (x,,Jz) — (p, Jx), and using the
weakly lower semicontinuity of the norm, we have

op,x) = |pl* —2(p, Jz) + ||=|?
lim inf (||£Un||2 — 2{xp, Jx) + ||x||2)

IA

lim inf ¢(,,, ).
n—oo

Hence ¢(-, x) is weakly lower semicontinuous on X. Obviously, the continuity and
convexity of the function ¢(-, ) follow from the continuity and convexity of || - ||
and the linearity of Jx. (]

Motivated by Lemmas 1.3 and 1.5 of Martinez-Yanes and Xu [17] in Hilbert
spaces, we present the following two lemmas.

Lemma 2.3. Let C be a nonempty closed convex subset of a smooth Banach space
X, z,y,2 € X and X € [0,1]. Given also a real number a € R, the set

D:={vel:¢(vz2) <Ap(v,z)+ (1 —No(v,y) +a}

is closed and convex.

Proof. The closedness of D is obvious from the continuity of ¢(-,z) for z € X.
Now we show that D is convex. As a matter of fact, the defining inequality in D is
equivalent to the inequality

(0 Nz + (1= N)Jy = Jz) < S(Mal® + (1= Nyl = [12]* + a).

[N

This inequality is affine in v and hence the set D is convex. O

Lemma 2.4. Let X be a reflexive, strictly convexr and smooth Banach space with
the Kadec-Klee property, and let K be a nonempty closed convex subset of X. Let
zo € X and q =[] xo, where [, denotes the generalized projection from X onto
K. If {z,} is a sequence in X such that w,(x,) C K and satisfies the condition

(2.4) ¢(xn, x0) < ¢(q, 7o)
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for alln. Then x, — q = [[x xo-

Proof. By (2.4), {¢(xn,z9)} is bounded and, by (2.2), {x,} is bounded; so
ww(Tn) # O by reflexivity of X. Since ¢(-,x) is weakly lower semicontinuous
on X by Lemma 2.2, and, by using (2.4) again, we get ¢(v,zq) < ¢(q, o) for all
v € wy(x,). However, since wy,(x,) C K and ¢ = Qgxo, we must have v = ¢ for
all v € wy(zy,). Thus wy(z,) = {¢} and x,, — ¢. On the other hand, using the
weakly lower semicontinuity of ¢(-, zg) again, we have

o(g,x0) < liminf ¢(z,,x0)
n—oo

< limsup ¢(xy, o)
n—oo
< ¢(g;m) by (24)
and so limy,— o @(@n, x0) = &(g,x0). This implies lim,, ., ||z, = |l¢||]. By the

Kadec-Klee property of X, we have x,, — q.

Lemma 2.5 ([28]). Let X be a uniformly convex Banach space and let B, = {x €
X :||z|| <71} be a closed ball with radius v > 0 in X. Then there is a continuous,
strictly increasing and conver function g : [0,00) — [0,00), g(0) = 0, such that

() laz + (1 = a)y|* < allz]* + (1 = a)yl* — a1 - a)g(llz — yl)

for all x, y € B, and o € [0,1].

Recently, Kamimura and Takahashi [12] proved the following result, which plays
a crucial role in our discussion.

Proposition 2.6 ([12]). Let X be a uniformly conver and smooth Banach space
and let {xn}, {zn} be two sequences of X. If ¢(xy, zn) — 0 and either {x,} or {z,}
is bounded, then x, — z, — 0.

Here we give the following converse of Proposition 2.6.

Proposition 2.7. Let X be a smooth Banach space and let {x,},{z,} be two
sequences in X. If xp,—z, — 0 and either {x,,} or {z,} is bounded, then ¢(xn, 2n) —
0.

Proof. Since x,, —z,, — 0, it is not hard to see that if either {z, } or {z,} is bounded,
then the other is also bounded. Now let x € X be fixed. Then noticing that

|¢(xna 'T) - ¢(Z7u I)|

lnll® = lznll? + 2020 — 2, Ja) |
izl = lznlll(lznll + [[znl]) + 2l[2n = 2| ||zl

<
< lzn = zall(lznll + l[2nll + 2[l2]) — 0
and using the identity equation (2.3), we have

AT, 2n) = (T, 2) — P20, T) + 2(xn — 20, JT — J25)
< [9(@n,x) = d2n, 2) |+ 2[|zn — 20| (2] + [|2n])) — O

A
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and the proof is complete. O

Now combining Proposition 2.6 with Proposition 2.7 gives the following equiv-
alent form in uniformly convex and smooth Banach spaces. This property will be
frequently used for proving our main result.

Proposition 2.8. Let X be a uniformly convexr and smooth Banach space and
let {z,},{zn} be two sequences of X. If either {xz,} or {z,} is bounded, then
& (T, 2n) — 0 if and only if x, — 2z, — 0.

As an easy observation of Proposition 2.8, we obtain the following result.

Proposition 2.9. Let C be a closed convez subset of a uniformly convex and smooth
Banach space X and T : C — C be a relatively nonexpansive mapping. Then T is
continuous on F(T).

Proof. Let p € F(T) and let x,, — p. To claim that T'z,, — p, by Proposition 2.8, it
suffices to show that ¢(p, Tx,) — 0. Indeed, since J is norm-to-weak™ continuous,
Jx, = Jp; in particular, (p, Jz,) — (p, Jp). Hence

$(p,xn) = llpl* = 2(p, Jan) + lzal® — lIpI* = 2(p, p) + [Ip]* = 0.

Now using the relative nonexpansivity of T', we get

o(p, Tzy) < ¢(p,z,) — 0. O

Next consider the relationship between the Kadec-Klee property and the fol-
lowing weak property which is motivated by Proposition 2.8:

(KT) Given a sequence {z,} in a smooth Banach space X and x(# 0) € X,

d(xp,x) — 0 if and only if z,, — z.

Here, we prove that the property (KT) is equivalent to the Kadec-Klee property in
a reflexive, strictly convex and smooth Banach space.

Proposition 2.10. Let X be a smooth Banach space. Then,
(a) (KT) = (Kadec— Klee).
(b) if X is reflexive and strictly convex, (Kadec — Klee) = (KT).
Proof. (a) Let &, — x and ||z,|| — ||z||. Assume without loss of generality that
x # 0. Then, we have
$(@n, 2) = l|znll® = 2(zn, J2) + 2al® — J2]* - 2z, Jz) + ||2]|* = 0.

From (KT), it follows that x,, — x. Hence X satisfies the Kadec-Klee property.
(b) Let = (# 0) € X. Then, by virtue of Proposition 2.7, it suffices to show
that if ¢(z,,z) — 0, then z, — x. Now let ¢(z,,z) — 0. Clearly, {¢(zn,x)} is
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bounded; by (2.2), {z,} is bounded and s0 wy,(zy,) # 0. Now if ., — v € wy(zy),
then, since ¢(+, ) is weakly lower semicontinuous by Lemma 2.2,

o(v,x) < likm inf ¢(zp,,z) = klirn ¢(zn,,x) =0,

which says that ¢(v,z) = 0. By strict convexity of X, we have v = x for all
v € wy(xy,). Therefore, wy, (z,) = {z}; so x, — x. On the other hand, since

(lznll = 2])* < p(zn, 2) — 0,

we have ||z,| — ||z||. By the Kadec-Klee property, we conclude that x,, — z. O

3. Strong convergence theorems

In this section we first propose a modification of Ishikawa’s iteration process
(1.3), motivated by the idea due to [17], [18], to prove strong convergence for a pair
of relatively nonexpansive mappings in a Banach space.

Theorem 3.1. Let X be a uniformly convex and uniformly smooth Banach space,
let C' be a nonempty closed convex subset of X. Let {T1,T> : C' — C} be a pair of
relatively nonexpansive mappings with F = F(T1) N F(Ty) # 0. Assume that {ay,}
and {B,} are sequences in [0,1] such that liminf,, . a,(1 —ay) > 0 and 5, — 1.
Define a sequence {x,} in C' by the algorithm:

xg € C chosen arbitrarily,

Yn = J HanTozy + (1 — ap)JTh2y),

Zn = ﬂnxn + (1 - ﬁn)env

Hy,={veC:9(,yn) < and(v,2,) + (1 — an)p(v,zn)},
Wp={veC:(xy,—v,Jr, — Jry) <0},

Tnt1 = HHann Zo,

where J is the normalized duality mapping on X and {e,} is a bounded sequence
in C. If Ty is uniformly continuous on C, then x, — [ [ 0.

Proof. We employ the methods of the proofs in [18] and [17]. First, observe that
H,, is closed and convex by Lemma 2.3, and that W, is obviously closed and convex
for each n > 0. Next we show that F' C H,, for all n. Indeed, for all p € F, we
have, using convexity of || - ||? and relative nonexpansivity of T;, i = 1,2 (noticing
that z, € C),

(3.1) ¢(p,yn) = ¢(p, J~H(nI Tozn + (1 — ) JTh))
= ||p||2 —2(p,anJTozn + (1 — ap)JTixn) + ||an JTaz, + (1 — an)JTlxn||2

< ||p||2 = 2an(p, JT22n) — 2(1 — an)(p, JT17pn) + an”TQZnH2 + (1 - O‘n)HTIon
= ang(p,Tazn) + (1 — an)o(p, T17n)
< an¢(p7 Zn) + (1 - an)¢(p7 xn)
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So p € H, for all n. Moreover, we show that
(3.2) FCcH,NW,

for all n > 0. It suffices to show that FF C W, for all n > 0. We prove this by
induction. For n = 0, we have F' C C = Wj. Assume that F' C W}, for some k£ > 1.
Since 1 is the generalized projection of g onto Hy N Wy, by Proposition 2.1 (a)
we have

(Tpy1 — 2, Jxg — JTpq1) > 0

for all z € HyNWy. As F C HxNWj, the last inequality holds, in particular, for all
z € F. This together with the definition of Wy, implies that F' C Wy41. Hence
(3.2) holds for all n > 0. So, {,,} is well defined. Obviously, since z,, =[]y, o by
the definition of W,, and Proposition 2.1 (a), and since F' C W, it follows from the
definition of [y, that ¢(zy,,0) < ¢(p, o) for all p € F. In particular, we obtain
that for all n > 0,

(3.3) O (xn, o) < &(g,x0), where ¢ :=]][pxo.

Therefore, {¢(xn, xo)} is bounded; so is {z,} by (2.2). Since {e,} is bounded, {z,}
is also bounded. Noticing that ¢(p, Tiz,) < ¢(p,zy) for all p € F(T;), {Tixn} is
also bounded for i =1, 2.

Now we show that

Indeed, by the definition of W, and Proposition 2.1 (a), we have z, = [[y, o
which together with the fact that x,,41 € H, N W,, C W,, implies that

(T, T0) = zlg%ln #(2,20) < G(Tny1,20),

which shows that the sequence {¢(z,, xo)} is nondecreasing and so the lim,, oo ¢(zn, o)
exists. Simultaneously, from Proposition 2.1 (b), we have

(35) (b(-rn—i-la xn) = ¢ (xn+1a HWTLJJO) < ¢(£Cn+1, :I,‘O) — ¢(HWTL;I;O’ -TO)
= ¢(Tny1,70) — ¢(2n,20) — 0.

Hence, (3.4) is satisfied from Proposition 2.8.
Since B, — 1, and {z,}, {en} are bounded, we have

(36) ||-'L'n - Zn” = (1 - ﬁn)”xn - enH — 0.

Combining with (3.4) gives ||€n4+1—2n| — 0, which is equivalent to ¢(zp41, 2,) — 0
by Proposition 2.8. Now since z,4+1 € H,, we have

A(Tnt1,Yn) < @nd(Tnt1, 2n) + (1 — an)d(Tpy1, Tn) — 0,
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hence ¢(z,+1,yn) — 0. Using Proposition 2.8 again, we obtain ||z,+1 — yn| — 0.
This, together with (3.4), implies that ||z, — yn| — 0 and also ||z, — yn|| — 0.

Next, we show that ||, — Tjz,| — 0 for all i = 1,2. Since {T12,} and {T2z,}
are bounded, there exists r > 0 such that {Thz,} U {T2z,} C B,. Applying for
Lemma 2.5 yields

(3.7) llon I Tz 4 (1 — ) J Ty, ||
< an”T?ZnHQ +(1 - O‘n)HTlanQ = an(1 = an)g(|JTazn — JT1z0|]),

where g : [0,00) — [0,00) is a continuous, strictly increasing and convex function
with g(0) = 0. Using (3.7) instead of convexity of || - || in (3.1), we have

¢(p, yn) < an¢(p7 Zn) + (1 - an)¢(pa xn) - an(]- - Oén)g(HJTQZn - JTlan)
and so

(3.8) an(1 — an)g(|JTez, — JTi2,]|)
< an(b(pa Zn) + (1 - an)¢(p7 xn) - ¢(p7 yn)

Notice that, for p € F', using (2.3) repeatedly,

(39) (b(pa yn) = ¢(pv Zn) + ¢(znv yn) + 2<p — Zn, Jzn — Jyn>7
= ¢, zn) tcn

and

(3'10) ¢(p7 yn) = (b(pa xn) + ¢(xn7yn) + 2<P — Ty, JTy — Jyn>
= o(p,7n) +dy,

where ¢, = ¢(znayn) + 2<p — Zn,Jzn — Jyn> — 0 and d, = d)(‘rnayn) + 2<p -
Zny JTy — JYn) — 0 from Proposition 2.8. After multiplying a,, and 1 — a, in (3.9)
and (3.10), respectively, summing both sides yields

(P, yn) = and(p, 2n) + (1 = an)d(p, Tn) + ancn + (1 — ay)dn.
Since ¢,,, d, — 0, we obtain
Oén¢(p, Zn) + (1 - an)¢(pa xn) - ¢(pa yn) — 0.
Then it follows from (3.8), together with liminf, . @, (1 — ) > 0, that

lim g(||JTo2, — JTizn|)) = 0.
n—o0

Since g is continuous, strictly increasing and g(0) = 0, limy, oo || JT22n — JT1 20| =
0. Since J~! is also uniformly norm-to-norm continuous on bounded sets, we have

||T22n — Tlan — 0
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Immediately, using convexity of || - || and Proposition 2.8 again, we have

¢(T1$nvyn) HTlan2 - 2<T1$naanJT2Zn + (]- - an)JTlxn>
HlanJTazn + (1 — o) JT1, ||

< an¢(T1x7L7T227L) — 0.

Using Proposition 2.8 once more gives |12, — Yn|| — 0, this combined with ||y, —
Zn|| — 0 implies

(3.11) T 2 — x| — 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have
(3.12) lJzn — Jynll — 0, ||JThzn — Ja,| — 0.

On the other hand, notice that

(3.13) Jxy = Jyn = Jrn — (@ndJToz, + (1 — o) JTi2,)
= a,(Jr, — JToz) + (1 — an)(Jx, — JThzy)

from the definition of y,,. Then using (3.12) and liminf, . o, > 0 yield
1
|z, — JTaz,|| = . W(Jzp — Jyn) + (1 — ) (JT12p, — Jy) ||
1
< —(Jen = Jyall + (A = an)llJThan = Janal) —

Again, since J~! is also uniformly norm-to-norm continuous on bounded sets, we
have

|zn — Tozp]| — O.

Since ||z, — || — 0 and T is uniformly continuous, this yields

(3.14) lzn, — Toxy|| < ||zn — Tozn|| + |T22n — Toxy| — O.

With the help of (3.11) and (3.14), we have wy,(z,) C ( 1)NF(Ty) = F(Ty) N
F(Ty) = F. Joining with (3.3) and Lemma 2.4 (with K := F), we conclude that
Tn — q=[]pzo. O

Remark 3.2. Note that if 7o = I, the processes of (3.7)-(3.11) are abundant.
Also, the parameter assumption liminf,, . oy, (1 — ay,) > 0 in Theorem 3.1 can be
weaken with limsup,, . a, < 1 as readily seen in (3.13) to get ||z, — Thz,| — 0.

Taking 8, = 1 for n > 1 in Theorem 3.1, we have the following modification of
Mann’s iteration process (1.2) to prove strong convergence for a pair of relatively
nonexpansive mappings in a Banach space.
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Theorem 3.3. Let X be a uniformly convex and uniformly smooth Banach space,
let C' be a nonempty closed convex subset of X. Let {T1,T» : C — C} be a pair of
relatively nonexpansive mappings with F := F(Ty) N F(Ty) # 0. Assume that {a,}
is a sequence in [0, 1] such that liminf, . an(1—ay,) > 0. Define a sequence {x,}
in C by the algorithm:

xg € C chosen arbitrarily,

Yn = J HanJTox, + (1 — ap)JTixy,),
H, = {U eC: ¢(Uayn) < ¢(U,In)},
W,={veC:(x, —v,Ja, — Jrg) <0},
Zni1 = [, aw, To-

If either Ty or T is uniformly continuous on C, then x, — [ zo.

Now taking T, = I, the identity operator of X and 77 = T in Theorem 3.3,
since the control condition of liminf,, . a,(1 — a;) > 0 can be replaced with

lim sup,, , . an < 1 by Remark 3.2, we have the following result due to Matsushita
and Takahashi [18].

Corollary 3.4 ([18]). Let X be a uniformly conver and uniformly smooth Banach
space, let C be a nonempty bounded closed convex subset of X and letT : C' — C be
a relatively nonezpansive mapping with F(T) # 0. Assume that {a, } is a sequences
in [0,1] such that limsup,,_, o, < 1. Then the sequence {x,} generated by the
algorithm (1.6) converges in norm to [ p ) 2o-

In Hilbert spaces, noticing that ¢(z,y) = ||z — y||? for all z,y € H, we see that
[Tz —Ty| < ||z -yl is equivalent to ¢(Tz, Ty) < ¢(x,y). Also, the demiclosedness
principle of a nonexpansive mapping 7' yields that F' (T') = F(T). Therefore, every
nonexpansive mapping is relatively nonexpansive (for more details, see the proof of
Theorem 4.1 in [18]). Now we have the following two variants of Theorem 3.1 and
3.2 for a pair of nonexpansive mappings in Hilbert spaces.

Theorem 3.5. Let C be a closed convex subset of a Hilbert space H and let {T1,T5 :
C — C} be a pair of nonexpansive mappings with F := F(T1)NF(Ty) # (. Assume
that {a,} and {B,} are sequences in [0, 1] such that iminf, oo (1 —ap) > 0
and B, — 1. Define a sequence {x,} in C by the algorithm:

xg € C chosen arbitrarily,

Yn = anT2zn + (1 - an)Tlxna

Zn = ﬂnxn + (]- - /Bn)env

Cp={v€C:|lyn — [’ < anllzn — v[I> + (1 — an)llzn — v[I*}
Qn={vel:{x,—v,x, —x9) <0},

Tn+1 = Po,ng, To,

where {e,} is a bounded sequence in C. Then the sequence {x,} converges in norm
to pro.
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Theorem 3.6. Let C be a closed convex subset of a Hilbert space H and let {T1,T5 :
C — C} be a pair of nonexpansive mappings with F := F(T1)NF(Ty) # (. Assume
that {an} is a sequence in [0,1] such that liminf, . a,(1 — a,) > 0. Define a
sequence {x,} in C by the algorithm:

xo € C chosen arbitrarily,

Yn = OénT2xn + (]- - an)Tlxn7
Cn={veC:|lyn — |l < [lzn — v}
Qn={vel:(x,—vxz, —x) <0},
Tp+1 = PCn,ﬁQn]:Oa

Then the sequence {x,} converges in norm to Prxg.

Asrecalling Remark 3.2 again, taking T, = I, T} = T and the term e,, = T'x,, for
n > 1 in Theorem 3.5, and taking 75 = I and 77 = T in Theorem 3.6, respectively,
we obtain the following subsequent results due to Martinez-Yanez and Xu [17] and
Nakajo and Takahashi [19], respectively.

Corollary 3.7 ([17]). Let C be a nonempty closed convex subset of a Hilbert
space H, and let T : C — C be a nonexpansive mapping such that F(T) # 0.
Assume that {an} and {8,} are sequences in [0,1] such that limsup,,_, ., an < 1
and B, — 1. Then the sequence {x,} defined by the algorithm (1.5) converges in
norm to Pp(1)xg.

Corollary 3.8 ([19]). Let C be a nonempty closed conver subset of a Hilbert space
H, and let T : C — C be a nonexpansive mapping such that F(T) # (. Assume
that {an} is a sequence in [0,1] such that limsup,, . an < 1. Then the sequence
{zn} defined by the algorithm (1.4) converges in norm to Ppryzo.

Now we propose another modification of Ishikawa’s iteration process (1.3) to
have strong convergence for a pair of relatively nonexpansive mappings defined on
a Banach space.

Theorem 3.9. Let X be a uniformly convex and uniformly smooth Banach space,
and let {T1, Ty : X — X} be a pair of relatively nonexpansive mappings with F :=
F(Th) N F(T3) # 0. Assume that Ty is uniformly continuous and {a,} and {3,}
are sequences in [0, 1] such that limsup,,_, . a, <1 and B, — 1. Define a sequence
{zn} by the algorithm:

x9 € X chosen arbitrarily,

Zn = Jﬁl(ﬂnjxn + (1= Bn)Jen),

Yn = J HanJTozn + (1 — an)JTh20),
W, ={veX:{(x,—v,Ja, — Jrg) <0},
Tn+1 = HHHQWH o,

where {e,} is a bounded sequence in X. Then {x,} converges in norm to [[x xo.
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Proof. Use the following (3.15)-(3.17) to prove ||z, — z»| — 0 of (3.6) in the proof
of Theorem 3.1. Since x,,+1 € H,, we have

(315) ¢(xn+17yn) S an¢(xn+1axn) + (]- - an)¢(xn+17 Zn)

However, using the convexity of || - ||* for the first inequality, and £, — 1,

¢(Tp+1,Tn) — 0 and the boundedness of {z,,} and {e, }, we get

(3:16) S(n+1,20) = NTnt1ll® = 2(Tnt1, Budzn + (1 = Bn)Jen)
+||6ann + (1 - ﬁn)Jen||2

”mn—H”2 = 260 (@nt1, JTn) — 2(1 — Bn){(Tng1, Jen)
F0nllzall? + (1 = Ba)llenl?

= Bnd(Tnt1,2n) + (1 = Bn)d(Tnt1,€n) — 0.

IN

Therefore, the right hand of (3.15) converges to 0; hence ¢(n41,yn) — 0. Also,
from Proposition 2.8, ¢(zn41,2,) — 0 implies that ||z,4+1 — z,]| — 0, and this,
together with (3.4), gives that

(3.17) lxn — 2zn|| — 0.

Now repeating the remaining part of the proof of Theorem 3.1, we can prove that
zn — [ zo. O

Using Lemma 2.5 and the induction method, we have the following easy obser-
vation.

Lemma 3.10. Let X be a uniformly convex Banach space and let B, = {x € X :
lz]| < r} be a closed ball with radius r > 0 in X. Then there exists a continuous
strictly increasing convex function g : [0,00) — [0, 00) with g(0) = 0 such that

(3.18) 1D Xl < - Allaal® = Nidog ([l — woll)

i=0 i=0
for alln, 1 <i <n, where all z; € B, and X; € [0,1] with >.1" j\; = 1.

We next prove strong convergence for a finite family of relatively nonexpansive
mappings in a Banach space.

Theorem 3.11. Let X be a uniformly convex and uniformly smooth Banach space,
let C be a nonempty closed convex subset of X. Given a positive integer N > 1,
let {T;}N.| be a finite family of relatively nonexpansive self-mappings of C with
F =N, F(T;) # 0. Assume that, for each n, {ag)} is a finite sequence in [0, 1]

such that vazo ozgf) =1 and also liminf, . &, > 0, where &, = oz%o) min{ag) :
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1 <1< N}. Define a sequence {x,} in C by the algorithm:

xg € C chosen arbitrarily,

Y = J U i T Ti),

Hy, ={veC:¢v,yn) < d(v,20)},
W,={velC:{x, —v,Ja, — Jxg) <0},

Int+1 = HHWQWn Zo,
where Ty = I is the identity operator of X. Then x, — [] xo.

Proof. Obviously, H,, and W,, are closed and convex for each n > 0. Next we show
that F C H,, for all n > 0. Indeed, for all p € F, we have, using convexity of || - ||?
and relative nonexpansivity of T;, 1 <7 < N,

(3.19) 0(p.yn) = ¢(p, T (L1 P T Ti))
= lIpll® =200, Zilo ) T Tian) + [ 2L o) T T |
Yo oS lIpll* = 2(p, JTizn) + | T )
Zij\io agf)qb(p, Tixy)
Yoo 6(p,xn) = 6(p xn).
So p € H, for all n > 0. By mimicking the processes of the proof of Theorem 3.1,

we can similarly prove the following properties:

(i) x, is well defined for all n > 0.

IA

IN

(i) ¢(xpn,z0) < ¢(q, x0) for all n, where ¢ := ] xo.

(iil) (|1 — znll — 0.
Noticing that ¢(p, Tizn) < ¢(p,z,) for all p € F, {T;z,} is also bounded for
1<i<N. Since z,,+1 € Hy,, we have

¢(xn+1ayn) < d)(xn-i-laxn) — 0,

hence ¢(zp+1,yn) — 0. Using Proposition 2.8, we obtain ||Z,4+1 — y»|| — 0. This,
together with (iii), implies that ||z, — y»|| — 0. Since J is uniformly norm-to-norm
continuous on bounded sets, we have

(3.20) |Jzp — Jyn] — 0
and also
(3.21) O(Ysa) — 0

by virtue of Proposition 2.8.
Now we claim that

(3.22) llzn — Tiznl — O



700 T. H. Kim and H. J. Lee

for 1 <¢ < N. Since all {T;z,} are bounded for 0 < i < N, there exists r > 0 such
that {x,} U{Thzn,}U---U{TNnz,} C B,. Applying for Lemma 3.10 yields
(3.23) I o T T

< SN al|Tiaa|? — aPaQg(| Tz, — Jz,l),

for 1 < ¢ < N, where g : [0,00) — [0,00) is a continuous, strictly increasing and
convex function with g(0) = 0. Using (3.23) instead of convexity of || - [|? in (3.19),
we similarly obtain

B(p,yn) < 0(p,zn) — &PV g(| I Tizy — Tz )

for pe Fand 1 <i < N. This with (2.3) yields

(324) ool g(|I Tz, — Jaal)) < $(p,20) — (D, yn)

for 1 < i < N. Using (3.20) and (3.21), we see the right hand of (3.24) converges
to zero as n — oo. Since liminf,, .., &, > 0 by assumption, we have

g([J iz — Janl) — 0

for 1 < ¢ < N. Since g is continuous, strictly increasing and ¢(0) = 0,
lim,, oo [|[JT32y — Jxn]| = 0 for 1 <4 < N. Since J~! is also uniformly norm-
to-norm continuous on bounded sets, we have

|Tiwn — xp| — 0

for 1 <4 < N, which proves (3.22).

It is not hard to derive from (3.22) that wy, (z,) € NN, F(T;) = F. After joining
this property with (ii), an application of Lemma 2.4 (with K := F') ensures that
zn — ¢ =[]pxo. ]

Remark 3.12. Note that taking 7; = T for all 1 < 4 < N in Theorem 3.11
coincides with the case of taking To = I and 77 =T in Theorem 3.3.

Finally, we shall give examples of relatively nonexpansive self-mappings which
are not nonexpansive. This is motivated by the example in the Hilbert space £2 of
Goebel and Kirk [9].

Example 3.13. Let B denote the unit ball in the space X = ¢P, where 1 < p < oc.
Obviously, X is uniformly convex and uniformly smooth. Let T': B — B be defined
by

Ta = (0,27, Aawa, Ass, )

for all z = (21, 22,23, -+) € B, where A, =1 — 3 for n > 2 (hence [[;” , A, = 3).

Then T is Lipschitzian, i.e., [Tz — Ty| < 2||x — y|| for all 2,y € B. Noticing that,
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for ¢ = (z1,29,--+) € B,

n+1 n+2

Tz ( OH)\acl,H)\xg,H)\xg, )

and also for each n > 2, since [T , A\; = 3 (1+ 2) and [Tt = =(1-14) (nﬁil

1 as k — oo, we have
n+k—1

ZH)\ 71+,> H A\

for all k > 2. Thus we have ||T”x7T”y|| < 2Hi=2 )\Z||xfy|| for all n > 2. Obviously,
since 2], \; | 1, T is asymptotically nonexpansive. On the other hand, since
Tz — Tyl = % l—||96—y||f01r:L‘—(100 --)and y = (1/2,0,0,---), T is
not nonexpansive. But T is relatively nonexpansive. Indeed, since ||Tz|| < ||z| for
x € B and F(T) = {0}, where 0 = (0,0,---) € B, we can see that

$(0,Tx) = ||Tl* < f|z]|* = $(0, )

for all x € B. Also, from the demiclosedness principle of the asymptotically non-
expansive mapping T (see Theorem 2 of [27]) it follows immediately that F(T) C
F(T). Since the converse inclusion always holds true, it must be F(T) = F(T).
Therefore, T is relatively nonexpansive.

Next, consider an example in case F'(T) is not singleton set.

Example 3.14. Let X = /P, where 2 < p < o0, and C = {& = (z1,22,---) €
X;0 < z, < 1}. Then C is a closed convex subset of X. Note that C is not
bounded. Let T : C' — C' be defined by

Tz = (.Tl, 07']:%3 )\23?3, A3x47 o )

for all @ = (21, 22,%3,--+) € C, where A\, =1 — -5 for n > 2 as in Example 3.13.
In a similar way to Example 3.13, we see that T is Lipschitzian, asymptotically
nonexpansive, but not nonexpansive. Obviously, F(T) = {p = (p1,0,0,---) : 0 <
p1 <1} and Jz = M%(\xl\pflsignxl, |z2|P~Isignxg, - -+ ) for & = (21,292, ++) €
X. Now we claim that T is relatively nonexpansive. Indeed, since ||Tz|| < ||z| for
xz € C, for p=(p1,0,---) € F(T) and x = (21,2, -+ ) € C, we have

{p,JTa) = piat™"/||T|"~?
prat |27 = (p, Ja),

Y

and so
o(p, Tx) = ||plI* — 2(p, JTx) + | Tx||* < [|pl|* — 2(p, Jz) + ||z = 6(p, z).

Similarly to the argument of Example 3.13, we have F(T) = F(T). Thus, T is
relatively nonexpansive.

)
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