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Abstract. Let Wα be a weighted shift with positive weight sequence α = {αi}∞i=0. The

semi-cubical hyponormality of Wα is introduced and some flatness properties of Wα are

discussed in this note. In particular, it is proved that if αn = αn+1 for some n ≥ 1, then

αn+k = αn for all k ≥ 1.

1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space and let L(H)
be the algebra of all bounded linear operators on H. An operator T in L(H) is
weakly n-hyponormal if p(T ) is hyponormal for any polynomial p with degree less
than equal to n. And an operator T is polynomially hyponormal if p(T ) is hyponor-
mal for every polynomial p. In particular, the weak 2-hyponormality (or weak
3-hyponormality) refered to as quadratical hyponormality (or cubical hyponormal-
ity, resp.), and has been considered in detail in [5], [6] and [8]. The flatness property
makes an important role for detecting the bridges between subnormal and hyponor-
mal operators. In [10] Stampfli proved that every subnormal weighted shift Wα

with any two equal weights has a flatness property, i.e., it holds that if αk = αk+1

for some k ∈ N0 := N ∪ {0}, then α1 = α2 = · · · . In [2], R. Curto proved that
the 2-hyponormal weighted shift Wα with any two equal weights has flatness prop-
erties. And he obtained a quadratically hyponormal weighted shift Wα with first
two equal weights but not the flatness property and gave a question: describe all
quadratically hyponormal weighted shifts with first two equal weights, which can
be applied to the detections of operator gaps (cf. [CuJ], [JuP1]). But it is still
open whether there exists a cubically hyponormal weighted shift Wα with a weight
sequence α : α0 = α1 < α2 < · · · . Also [1], Y. Choi proved that every polynomially
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hyponormal weighted shift Wα with any two equal weights has flatness properties.
In this note we introduce a semi-cubically hyponormal weighted shift (which will

be defined below) and discuss their flatness properties. In particular, we proved that
if Wα is a semi-cubically hyponormal weighted shift with αn = αn+1 for some n ≥ 1,
then αn+k = αn for all k ≥ 1. Hence this flatness property preserves in the case of
cubical hyponormality. Some of the calculations in Section 2 were obtained through
computer experiments using the software tool Mathematica [12].

2. Construction of formulas

For A,B ∈ L(H), we write [A,B] := AB − BA. Let Wα be a hyponormal
weighted shift with a positive weight sequence α := {αi}∞i=0. Recall that a weighted
shift Wα is cubically hyponormal if Wα +aW 2

α +bW 3
α is hyponormal for any a, b ∈ C

([9]), i.e.,

D(a, b) := [(Wα + aW 2
α + bW 3

α)∗,Wα + aW 2
α + bW 3

α] ≥ 0 for any a, b ∈ C.

Let {ei}∞i=0 be an orthonormal basis for H and let Pn be the orthogonal projection
on ∨n

i=0{ei}. For a, b ∈ C we let

Dn(a, b) = Pn[(Wα + aW 2
α + bW 3

α)∗,Wα + aW 2
α + bW 3

α]Pn

=



q0 r0 z0 0
r0 q1 r1 z1 0
z0 r1 q2 r2 z2 0

0 z1 r2 q3 r3 z3
. . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . zn−2

. . . . . . . . . . . . rn−1

0 zn−2 rn−1 qn



,

where

qn := (α2
n − α2

n−1) + (α2
nα2

n+1 − α2
n−2α

2
n−1) |a|

2 + (α2
nα2

n+1α
2
n+2 − α2

n−3α
2
n−2α

2
n−1) |b|

2
,

rn := αn(α2
n+1 − α2

n−1)ā + αn(α2
n+1α

2
n+2 − α2

n−1α
2
n−2)ab̄,

zn := αnαn+1(α2
n+2 − α2

n−1)b̄.

Then it is obvious that Wα is cubically hyponormal if and only if the pentadiagonal
matrix Dn(a, b) ≥ 0 for any a, b ∈ C and any n ∈ N. To detect Dn(a, b) ≥ 0 for any
a, b ∈ C and any n ∈ N, we consider dn(a, b) := detDn(a, b) and it follows from [11]
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that for n ≥ 5,

dn(a, b) =

(
qn−1 −

rn−3rn−2zn−3

|rn−3|2

)
dn−1 −

(
|rn−2|2 −

qn−2rn−3rn−2zn−3

|rn−3|2

)
dn−2

−
(
|zn−3|2 qn−2 − rn−3rn−2zn−3

)
dn−3

+ |zn−4|2
(
|zn−3|2 −

qn−3rn−3rn−2zn−3

|rn−3|2

)
dn−4

+
|zn−4|2 |zn−2|2 rn−3rn−2zn−3

|rn−3|2
dn−5.

Hence if Wα is cubically hyponormal, then dn(a, b) ≥ 0 for any a, b ∈ C.

Definition 2.1. (i) A weighted shift Wα is semi -cubically hyponormal with type I
if Wα + sW 3

α is hyponormal for any s ∈ C.

(ii) A weighted shift Wα is semi -cubically hyponormal with type II if W 2
α + sW 3

α is
hyponormal for any s ∈ C.

2.1. Type I. Let {ei}∞i=0 be an orthonormal basis for H and let Pn be the orthog-
onal projection on ∨n

i=0{ei}. For s ∈ C, we let

D[1]
n (s) = Pn

[(
Wα + sW 3

α

)∗
,Wα + sW 3

α

]
Pn.

It is obvious that a quadratically hyponormal weighted shift Wα is semi-cubically
hyponormal with type I if and only if the matrix D

[1]
n (s) ≥ 0 for any s ∈ C and

n ∈ N. Recall that for s ∈ C,

D[1]
n (s) = Pn

[(
Wα + sW 3

α

)∗
,Wα + sW 3

α

]
Pn

=



q0 0 z0 0
0 q1 0 z1 0
z̄0 0 q2 0 z2 0

0 z̄1 0 q3 0 z3
. . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . zn−2

. . . . . . . . . . . . 0
0 z̄n−2 0 qn



,
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where

qk := uk + |s|2 vk, |zk|2 := |s|2 wk,

uk := α2
k − α2

k−1, vk := α2
kα2

k+1α
2
k+2 − α2

k−3α
2
k−2α

2
k−1,

wk := α2
kα2

k+1(α
2
k+2 − α2

k−1)
2,

as usual, we set α−1 = α−2 = α−3 = 0 for our convenience. To detect D
[1]
n (s) ≥ 0

for any s ∈ C and any n ∈ N, we consider d
[1]
n := d

[1]
n (s) := detD

[1]
n (s). Hence if Wα

is semi-cubically hyponormal with type I, then d
[1]
n (s) ≥ 0 for any s ∈ C and any

n ∈ N. Note that

d[1]
n (t) =

n+1∑
i=0

c[1](n, i)ti, where t := |s|2 .

For brevity, we will write c(n, i) for c[1](n, i) in this subsection without confusion.

Lemma 2.2 ([11]). The following recursive relations hold.

d
[1]
0 = u0 + v0t,

d
[1]
1 = u0u1 + (v0u1 + u0v1)t + v0v1t

2,

d[1]
n = qnd

[1]
n−1 − |zn−2|2 qn−1d

[1]
n−3 + |zn−3zn−2|2 d

[1]
n−4 (n ≥ 2),

where d
[1]
−1 = 1 and d

[1]
−2 = 0.

By direct computations, we obtain the following formulas.

Lemma 2.3. The following formulas hold.

(i) c(0, 1) = v0, c(0, 0) = u0; c(1, 2) = v0v1, c(1, 1) = v0u1 + u0v1, c(1, 0) = u0u1,

(ii) c (n, 0) = u0u1 · · ·un,

(iii) c (n, 1) = unc (n− 1, 1)+ 1
un−2

(vnun−2 − wn−2) (u0u1 · · ·un−2un−1) (n ≥ 2),

(iv) c(n, n + 1) = vnvn−1 · · · v1v0,

(v) c(n, n) = un(vn−1 · · · v1v0) + vnc(n− 1, n− 1)− wn−2vn−1(vn−3 · · · v1v0),

(vi) c(n, i) = unc(n− 1, i) + vnc(n− 1, i− 1)
+wn−2 [wn−3c(n− 4, i− 2)− vn−1c(n− 3, i− 2)− un−1c(n− 3, i− 1)]

(0 ≤ i ≤ n− 1).

Proof. Using formulas in Lemma 2.2 and comparing the coefficients of d
[1]
n (n ≥ 0),

we can obtain formulas in this lemma. �

We now detect some flatness properties as following.

Theorem 2.4. Let Wα be a semi-cubically hyponormal weighted shift with type I.
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Then we have the following assertions.

(i) If αn = αn+1 for some n ≥ 1, then αn+k = αn for all k ≥ 1.

(ii) If αn = αn+1 = αn+2 = αn+3 for some n ≥ 2, then α1 = α2 = α3 · · · .

Proof. (i) We first claim that if αn = αn+1 = αn+2 for some n ∈ N0, then αn+k = αn

for all k ≥ 1. For this proof, without loss of generality, we may assume that n = 0,
i.e., α0 = α1 = α2 = 1. Then it is sufficient to show that α3 = 1. To do so, we
detect the positivity of D

[1]
n (t) for t ≥ 0. Note that c(n, 0) = 0 = c(n, 1). Since

d
[1]
n (t) ≥ 0 (t ≥ 0), the coefficient of t2 which is the smallest order of d

[1]
n (t) should

be positive. By Lemma 2.3, we have

c(4, 2) = w1w2c(0, 0)− w2v3c(1, 0) + v4c(3, 1)− w2u3c(1, 1) + u4c(3, 2)

= −α2
4

(
α2

3 − 1
)3 ≥ 0,

which implies that α3 = 1. We now prove the assertion (i). Without loss of gener-
ality, we may assume n = 1, and α1 = 1, i.e., α1 = α2 = 1. And then it is sufficient
to show that α3 = 1 or α0 = 1. Obviously c(n, 0) = 0. The coefficient c(n, 1) of t
which is the smallest order of dn(t) is positive, but since

c(4, 1) = u4c (3, 1) +
1
u2

(v4u2 − w2) (u0u1u2u3)

= α2
4α

2
0

(
1− α2

3

)3 (
1− α2

0

)
,

we have α0 = 1 or α3 = 1. Hence by the above claim we have this conclusion.

(ii) Without loss of generality, we may assume n = 2, i.e., α2 = α3 = α4 = α5 = 1.
Then it is sufficient to show that α1 = 1. First note that c(n, 0) = 0. By Lemma
2.3, we have c(3, 1) = α4

0

(
α2

1 − 1
)3 ≥ 0, and so α1 ≥ 1. Hence α1 = 1. �

2.2. Type II. We use the same idea with type I. By direct calculation, we have
that

D[2]
n := D[2]

n (s) =
[(

W 2
α + sW 3

α

)∗
,
(
W 2

α + sW 3
α

)]

=



ω0 φ̄0 0
φ0 ω1 φ̄1 0
0 φ1 ω2 φ̄2 0

0 φ2 ω3 φ̄3 0

0 φ3 ω4 φ̄4
. . .

0 φ4 ω5
. . . . . .

. . . . . . . . . . . .
. . . . . . . . .


,
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where

ωk := ξk + |s|2 ηk,

φk := s
√

δk,

ξk := α2
kα2

k+1 − α2
k−2α

2
k−1,

ηk := α2
kα2

k+1α
2
k+2 − α2

k−3α
2
k−2α

2
k−1,

δk := α2
k

(
α2

k+1α
2
k+2 − α2

k−2α
2
k−1

)2
(k ≥ 0) ,

and α−1 = α−2 = α−3 := 0. Clearly, W 2
α + sW 3

α is hyponormal if and only if
D

[2]
n (s) ≥ 0 for every s ∈ C and every n ≥ 0. Let d

[2]
n (·) := det(D[2]

n (·)). Then

d
[2]
0 = ω0,

d
[2]
1 = ω0ω1 − |φ0|2 ,

d
[2]
n+2 = ωn+2d

[2]
n+1 − |φn+1|2 d[2]

n (n ≥ 0) ,

and that d
[2]
n is actually a polynomial in t := |s|2 of degree n + 1, with Maclaurin

expansion d
[2]
n (t) :=

n+1∑
i=0

c[2] (n, i) ti. This gives at once the following lemma. For

brevity, we will write c(n, i) for c[2](n, i) in Subsection 2.2 without confusion.

Lemma 2.5. It holds that

(i) c (0, 0) = ξ0, c (0, 1) = η0,

(ii) c (1, 0) = ξ1ξ0, c (1, 1) = ξ1η0 + ξ0η1, c (1, 2) = η1η0,

(iii) c (n, 0) = ξ0ξ1 · · · ξn > 0,

(iv) c (n, n + 1) = η0η1 · · · ηn > 0,

(v) c (n + 2, i) = ξn+2c (n + 1, i) + ηn+2c (n + 1, i− 1)− δn+1c (n, i− 1)
(n ≥ 0, 0 ≤ i ≤ n + 3) .

Proof. Repeat the methods which were used in Lemma 2.3. �

Theorem 2.6. If Wα is semi-cubically hyponormal with type II such that αn =
αn+1 for some n ≥ 1, then αn+k = αn for all k ≥ 1.

Proof. We first prove that if αn = αn+1 = αn+2 for some n, then αn+k = αn for
all k ≥ 1. For this proof, without loss of generality, we assume that n = 0, i.e.,
α0 = α1 = α2 = 1. Then it is sufficient to show that α3 = 1. In fact,

c (6, 0) = −α2
5α

2
4

(
α2

3 − 1
) (

α2
3α

2
4 − 1

) (
α2

4α
2
5 − α2

3

) (
α2

5α
2
6 − α2

3α
2
4

)
,

and d
[2]
6 (t) ≥ 0 for all t ≥ 0, we must have α3 = 1. By using this claim, we prove

this theorem. Without loss of generality, we may assume n = 1, and α1 = 1, i.e.,
α1 = α2 = 1. By the positivity of c(6, 0), we obtain α3 = α0 = 1. Hence the above
assertion about three equal weights proves this theorem. �
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Theorems 2.4 and 2.6 provide a question about the flatness of semi-cubically
hyponormal weighted shifts as the following problem.

Problem 2.7. Let Wα be a semi-cubically hyponormal weighted shift with a weight
sequence α = {αi}∞i=0 satisfying αn = αn+1 for some n ≥ 0. Does it hold that
α1 = α2 = α3 · · · ?
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