듀얼 소스 증착장치를 이용한 Ni-C 박막의 특성에 관한 연구

A Study on the Characterization of Ni-C Thin Films Utilizing a Dual-Source Deposition System

  • 한창석 (호서대학교 국방과학기술학과) ;
  • 전창환 (호서대학교 국방과학기술학과) ;
  • 한승오 (호서대학교 융합기술연구소)
  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University) ;
  • Chun, Chang-Hwan (Dept. of Defense Science & Technology, Hoseo University) ;
  • Han, Seung-Oh (Institute of Fusion Technology, Hoseo University)
  • 투고 : 2008.10.31
  • 심사 : 2008.11.20
  • 발행 : 2008.09.30

초록

Ni-C composite films were prepared using a combination of microwave plasma CVD and ion beam sputtering deposition working in a codeposition way. The structure of these films was characterized by energy-dispersive X-ray diffraction (EDXRD), transmission electron microscopy (TEM) and Raman spectroscopy. It was found that a nickel carbide phase, $Ni_3C$ (hcp), formed as very fine crystallites over a wide temperature range when Ni-C films were deposited at low $CH_4$ flow rates. The thermal stability of this nonequilibrium carbide $Ni_3C$ was also studied. As a result, the $Ni_3C$ carbide was found to decompose into nickel and graphite at around $400^{\circ}C$. With high $CH_4$ flow rates (> 0.2 sccm), the structure of the Ni-C films became amorphous. The formation behavior of the carbide and amorphous Ni-C phases are discussed in relation to the electrical resistivity of the films.

키워드

참고문헌

  1. A. M. Hussain, S. E. Romaine and P. Gorenstein : Grazing incidence and multilayer x-ray optical systems (1997) 260
  2. N. Laidani, L. Calliari and G. Speranza : Surface & Coatings Technology, 100 (1998) 116 https://doi.org/10.1016/S0257-8972(97)00599-9
  3. T. Tanaka, K. N. Ishihara and P. H. Shingu :Metall. Trans. 23A (1992) 2431
  4. J. Wang, X. F. Wu, B. X. Liu and Z. Z. Fang : Acta Metall. Mater. 40 (1992) 1417 https://doi.org/10.1016/0956-7151(92)90443-I
  5. R. Lamber : Surface Science, 197 (1989) 402 https://doi.org/10.1016/0039-6028(88)90636-X
  6. T. Itoh and R. Sinclair : Mat. Res. Soc. Symp. Proc. 349 (1994) 31
  7. T. J. Konno and Sinclair : Acta Metall. Mater. 42 (1994) 1231 https://doi.org/10.1016/0956-7151(94)90140-6
  8. C. Sella, M. Kaabouchi, R. Krishnan and M. Naili : Vacuum, 41 (1990) 1247 https://doi.org/10.1016/0042-207X(90)93924-8
  9. S. Tajima and S. I. Hirano : J. of Materials Science Letters, 11 (1992) 22 https://doi.org/10.1007/BF00720770
  10. R. Krawietz, B. Wehner, T. Sebald, H. Mai and R. Dietsch : Materia1s Science Forum, 166-169 (1994) 331 https://doi.org/10.4028/www.scientific.net/MSF.166-169.331
  11. W. Lu, W. C. Mitchel and G. R. Landis : Solid-state Electronics, 47 (2003) 2001 https://doi.org/10.1016/S0038-1101(03)00165-5
  12. J. Roberson : Surface & Coatings Tech. 50 (1992) 185 https://doi.org/10.1016/0257-8972(92)90001-Q
  13. L. Richard, C. Wu : Surface & Coatings Tech. 51 (1992) 258 https://doi.org/10.1016/0257-8972(92)90249-A
  14. H. Sjostrom, L. Hultman, J. E. Sundgren and L. R. Wallenberg : Thin Solid Films, 232 (1993) 169 https://doi.org/10.1016/0040-6090(93)90005-A
  15. J. Schreiber, V. Melov and R. Dietsch : Materials Science Forum, 407 (2002) 797 https://doi.org/10.4028/www.scientific.net/MSF.404-407.797
  16. K. Hammer, S. Roth, B. Mainz, O. Stenzel, W. Scharff, W. Dworschak, R. Kleber, A. Kruger, K. Jung and H. Ehrhardt : Mater. Sci. Eng., A140 (1991) 784
  17. Z. J. Li, G. H. Wen and F. W. Wang : J. of Materials Science & Technology, 18 (2002) 99 https://doi.org/10.1179/026708301125000285
  18. A. Inoue, S. Furukawa and T. Matumoto : J. Mater. Sci. 22 (1987) 1670 https://doi.org/10.1007/BF01132390