DOI QR코드

DOI QR Code

Synthesis and Properties of Ba(Ti,Sn)O3 Films by E-Beam Evaporation

전자빔증발법에 의한 Ba(Ti,Sn)O3막의 제조 및 특성

  • Park, Sang-Shik (Dept. of Advanced Materials Engineering, Kyungpook National University)
  • Published : 2008.07.27

Abstract

$Ba(Ti,Sn)O_3$ thin films, for use as dielectrics for MLCCs, were grown from Sn doped BaTiO3 sources by e-beam evaporation. The crystalline phase, microstructure, dielectric and electrical properties of films were investigated as a function of the (Ti+Sn)/Ba ratio. When $BaTiO_3$ sources doped with $20{\sim}50\;mol%$ of Sn were evaporated, $BaSnO_3$films were grown due to the higher vapor pressure of Ba and Sn than of Ti. However, it was possible to grow the $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn by co-evaporation of BTS and Ti metal sources. The (Ti+Sn)/Ba and Sn/Ti ratio affected the microstructure and surface roughness of films and the dielectric constant increased with increasing Sn content. The dielectric constant and dissipation factor of $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn showed the range of 120 to 160 and $2.5{\sim}5.5%$ at 1 KHz, respectively. The leakage current density of films was order of the $10^{-9}{\sim}10^{-8}A/cm^2$ at 300 KV/cm. The research results showed that it was feasible to grow the $Ba(Ti,Sn)O_3$ thin films as dielectrics for MLCCs by an e-beam evaporation technique.

Keywords

References

  1. H. Kishi, Y. Mizuno and H. Chazono, Jpn. J. Appl. Phys., 42(1), 1 (2003) https://doi.org/10.1143/JJAP.42.1
  2. M. Randall, in proceedings of the CARTS USA 2000 symposium (Huntington Beach, CA, March, 2000), 195 (2000)
  3. Y. Sakabe, Y. Takeshima and K. Tanaka, J. Electroceram., 3, 115 (1999) https://doi.org/10.1023/A:1009986825169
  4. S. Mustofa, T. Araki, T. Furusawa, M. Nishida and T. Hino, Mater. Sci. and Eng., B103, 128 (2003) https://doi.org/10.1016/S0921-5107(03)00160-0
  5. Y. Sakabe, Ceramics (in Japan), 36, 407 (2001)
  6. P. C. Joshi and S. B. Desu, Thin Solid Films, 300, 289 (1997) https://doi.org/10.1016/S0040-6090(96)09468-0
  7. S. Markovic, M. Mitric, N. Cvjeticanin and D Uskokovic, J. Eur. Ceram. Soc., 27, 505 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.04.066
  8. R. Steinhausen, A. Kouvatov, H. Beige, H. T. Langhammer and H. P. Abicht, J. Eur. Ceram. Soc., 24, 1677 (2004) https://doi.org/10.1016/S0955-2219(03)00496-5
  9. V. Mueller, L. Jager, H. Beige, H. P. Abicht and T. Muller, Solid State Commun., 129, 757 (2004) https://doi.org/10.1016/j.ssc.2003.12.035
  10. R. A. Zarate, A. L. Kabrera, U. G. Volkman and V. Fuenzalida, J. Phys. Chem. Solids, 59, 1639 (1998) https://doi.org/10.1016/S0022-3697(98)00008-0
  11. A. E. Feuersanger, A. K. Hagenlocher and A. L. Solomon, J. Electrochem. Soc., 111, 1387 (1964) https://doi.org/10.1149/1.2426011
  12. S. S. Park, J. H. Ha and H. N. Wadley, Integrated Ferroelectrics, 99, 105 (2008) https://doi.org/10.1080/10584580802107809
  13. S. W. Ding, J. Chai and C. Y. Feng, Mater. Lett., 60, 3241 (2006) https://doi.org/10.1016/j.matlet.2006.02.087
  14. W. Bak, C. Kajtoch and F. Starzyk, Mater. Sci. Eng., B100, 9 (2003) https://doi.org/10.1016/S0921-5107(02)00578-0
  15. C. Kajtoch, Mater. Sci. Eng., B64, 25 (2003) https://doi.org/10.1016/S0921-5107(99)00138-5
  16. A. Kumar, B. P. Singh, R. N. P. Choudhary and A. K. Thakur, Mater. Lett., 59, 1880 (2005) https://doi.org/10.1016/j.matlet.2005.02.004
  17. G. W. Dietz, M. Schumacher, R. Waser, S. K. Streiffer, C. Basceri and A. I. Kingon, J. Appl. Phys., 82, 2359 (1997) https://doi.org/10.1063/1.366045
  18. Z. Wei, M. Noda and M. Okuyama, Jpn. J. Appl. Phys., 41, 6619 (2002) https://doi.org/10.1143/JJAP.41.6619
  19. N. Shu, Ashok Kumar, M. R. Alam, H. L. Chan and Q. You, Appl. Surf. Sci., 109, 366 (1997) https://doi.org/10.1016/S0169-4332(96)00676-9