DOI QR코드

DOI QR Code

Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis

고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교

  • Kim, Jong-Min (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Shin, Seock-Jae (CNL Energy) ;
  • Woo, Sang-Kook (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Kang, Kae-Myung (Department of Materials Engineering, Seoul National University of Technology) ;
  • Hong, Hyun-Seon (Plant Engineering Center, Institute for Advanced Engineering)
  • 김종민 (고등기술연구원 플랜트엔지니어링센터) ;
  • 신석재 ((주)CNL Energy) ;
  • 우상국 (한국에너지기술연구원 융복합에너지재료연구센터) ;
  • 강계명 (서울산업대학교 신소재공학과) ;
  • 홍현선 (고등기술연구원 플랜트엔지니어링센터)
  • Published : 2008.07.27

Abstract

Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.

Keywords

References

  1. H. S. Hong, S. T. Choo and Y. Yun, Trans. of the Korea Hydrogen and New Energy Society, 14(4), 335 (2003). (in Korean)
  2. U. S. Chae, H. S. Hong and S. T. Choo, Trans. of the Korea Hydrogen and New Energy Society, 16(4), 372 (2005). (in Korean)
  3. J. M. Kim, H. C. Jung, A. S. Kang and H. S. Hong, Trans. of the Korea Hydrogen and New Energy Society, 18(3), 238 (2007). (in Korean)
  4. S. Lee, K. H. Kang, J. M. Kim, H. S. Hong, Y. Yun and S. K. Woo, J. Alloys Compd., 448, 363 (2008) https://doi.org/10.1016/j.jallcom.2007.08.022
  5. R. Hino, K. Haga, H. Aita and K. Sekita, Nucl. Eng. Des., 233, 363 (2004) https://doi.org/10.1016/j.nucengdes.2004.08.029
  6. J. Udagawa, P. Aguiar and N. P. Brandon, J. Power Sources, 166, 127 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.081
  7. C. Mansilla, J. Sigurvinsson, A. Bontemps, A. Mare'chal and F. Werkoff, Int. J. Hydrogen Energy, 32, 423 (2007) https://doi.org/10.1016/j.energy.2006.07.033
  8. H. S. Hong, U. S. Chae, S. T. Choo and K. S. Lee, J. Power Sources, 149, 84 (2005) https://doi.org/10.1016/j.jpowsour.2005.01.057
  9. H. S. Hong, U. S. Chae and S. T. Choo, J. Alloys Compd., 449, 331 (2008) https://doi.org/10.1016/j.jallcom.2006.01.131
  10. Z. Lu, L. Pei, T. He, X. Huang, Z. Liu, Y. Ji, X. Zhao and W. Su, J. Alloys Compd., 344, 299 (2002) https://doi.org/10.1016/S0925-8388(01)01795-9

Cited by

  1. The Electrical Property of Polymer Matrix Composites Added Carbon Powder vol.25, pp.12, 2015, https://doi.org/10.3740/MRSK.2015.25.12.678