DOI QR코드

DOI QR Code

Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels

고 Mn계 TRIP/TWIP 강의 수소취성 거동

  • 정종구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 이오연 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박영구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 김동은 (HYSCO 기술연구소) ;
  • 진광근 (POSCO 기술연구소)
  • Published : 2008.07.27

Abstract

The hydrogen embrittlement susceptibility of high strength TRIP/TWIP steels with the tensile strength of 600Mpa to 900Mpa grade was investigated using cathodically hydrogen charged specimens. TWIP steels with full austenite structure show a lower hydrogen content than do TRIP steels. The uniform distribution of strong traps throughout the matrix in the form of austenite is considered beneficial to reduce the hydrogen embrittlement susceptibility of TWIP steels. Moreover, an austenite structure with very fine deformation twins formed during straining could also improve the ductility and reduce notch sensitivity. In Ubend and deep drawing cup tests, TWIP steels show a good resistance to hydrogen embrittlement compared with TRIP steels.

Keywords

References

  1. J. P. Hirth, Metall. Trans., 11A, 861 (1980)
  2. A. R. Troiano, ASM Trans., 52, 54 (1960)
  3. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng., A176, 191 (1994) https://doi.org/10.1016/0921-5093(94)90975-X
  4. I. Maroef, D. L. Olson, M.Eberhart and G.R.Edwards, Int. Mat. Reviews, 47, 191 (2002) https://doi.org/10.1179/095066002225006548
  5. F. Nakasato and Tetsu-to-Hagane., 88, 20 (2002)
  6. H. Hargi, Y. Hayashi and N. Ohtani, Met. Trans., 20, 329 (1979)
  7. W. Y. Choo and J. Y. Lee, Met. Trans., 13A, 135 (1982)
  8. J. Watanabe, T. Takai, M. Nagumom and Tetsu-to-Hagane., 82, 947 (1996) https://doi.org/10.2355/tetsutohagane1955.82.11_947
  9. T. Tsumura, F. Nakasato, T. Ueda and N. Muri, Sumitomo Met., 40, 19 (1988)
  10. N. Bandyopadhyay, J. Kameda and C. J. MeMahon Jr., Metall. Trans., 14A, 881 (1983)
  11. F. Nakasato, F. Terasaki and Tetsu-to-Hagane., 61, 856 (1975) https://doi.org/10.2355/tetsutohagane1955.61.6_856
  12. T. Shiraga, N. Ishikawa, M. Ishiguro, E. Yamashita and S. Mizoguchi, CAMP-ISIJ, 7, 1646 (1994)
  13. T. Kimura, Y. Kurebayashi and S. Nakamura, CAMP-ISIJ, 7, 1642 (1994)
  14. H. Matsumoto, F. Nakasato, N. Kuratomi, T. Kushida and T. Tsumura, CAMP-ISIJ, 7, 1602 (1994)
  15. C. E. Price and R. G. Norman, Acta Met., 35, 1639 (1987) https://doi.org/10.1016/0001-6160(87)90111-8
  16. D. P. Dantovich and S. Floreen, Metall. Trans., 4A, 2627 (1973) https://doi.org/10.1007/BF02644267
  17. R. A. McCoy, Development of a high strength Mn steel Resistant to hydrogen embrittlement, Hydrogen in Metals, ASM., p.169, Materials Park, Ohio (1974)
  18. Y. Nakai, Y. Uesugi and H. Shimanaka, Kawasaki Tech. Report, 6, 324 (1974)
  19. M. B. Bever, Encyclopedia of Material Science and Eng., 3, 2241 (1986)
  20. A. W. Thompson, Hydrogen in Metals ASM., p.328 Materials Park, Ohio (1974)
  21. J. A. Donovan, Metall. Trans., 7A, 145 (1976)
  22. L. W. Tsay, M. Y. Chi, Y. F. Wu, J. K Wu and D. Y. Lin, Corrosion Science, 48, 1926 (2006) https://doi.org/10.1016/j.corsci.2005.05.042
  23. N. J. Petch and P. Stables, Nature, 169, 842 (1952) https://doi.org/10.1038/169842a0
  24. A. S. Tetelman, The mechanisms of hydrogen embrittlement in steel, Fundamental Aspects of Stress Corrosion Cracking, p.446, Houston, USA, (1962)
  25. A. W. Thompson and I. M. Bernstein, Adv. Corros. Sci. Tech., 7, 53 (1979)

Cited by

  1. Tribological Evaluation of Titanium and Aluminum Alloys Exposed to Hydrogen in Wet Conditions vol.1, pp.1, 2012, https://doi.org/10.1520/MPC104551
  2. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel vol.469, pp.2149, 2012, https://doi.org/10.1098/rspa.2012.0458
  3. Oxidation of Fe-18%Mn-0.6%C Steels in Air and a N2-CO2-O2 Mixed Gas Atmosphere at 1273-1473 K vol.83, pp.4, 2012, https://doi.org/10.1002/srin.201100323
  4. Critical Assessment 2: Hydrogen induced fracture in austenitic, high-manganese TWIP steel vol.30, pp.10, 2014, https://doi.org/10.1179/1743284714Y.0000000566
  5. Analysis of solidification microstructure and hot ductility of Fe–22Mn–0·7C TWIP steel vol.30, pp.11, 2014, https://doi.org/10.1179/1743284714Y.0000000560