DOI QR코드

DOI QR Code

Rheological Properties of Pork Myofibrillar Protein and Sodium Caseinate Mixture as Affected by Transglutaminase with Various Incubation Temperatures and Times

Transglutaminase를 첨가한 돈육 근원섬유단백질과 카제인염 혼합물의 배양온도와 시간에 따른 물성변화

  • Hwang, Ji-Suk (Department of Animal Science and Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Lee, Hong-Chul (Department of Animal Science and Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Chin, Koo-Bok (Department of Animal Science and Institute of Agricultural Science and Technology, Chonnam National University)
  • 황지숙 (전남대학교 동물자원학부 및 농업과학기술연구소) ;
  • 이홍철 (전남대학교 동물자원학부 및 농업과학기술연구소) ;
  • 진구복 (전남대학교 동물자원학부 및 농업과학기술연구소)
  • Published : 2008.06.30

Abstract

To investigate the rheological properties of protein mixed gels mediated by microbial transglutaminase (MTGase), pork myofibrillar protein (MFP), sodium caseinate (SC) and their mixture (MS), the various gels were incubated at different temperatures for various times. Extracted MFP, SC and their mixture (MS, 1:1) were incubated at different temperatures ($4^{\circ}C$ vs $37^{\circ}C$) for various times (0, 0.5, 2, 4 hr), and assessed for viscosity, gel strength and other characteristics using differential scanning calorimeter (DSC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). DSC measurements showed that incubation at $37^{\circ}C$ rather than $4^{\circ}C$ caused marked changes in thermal transition, and MS displayed similar thermal curves (three endothermic transitions) to MFP and SC alone. After incubation at $37^{\circ}C$ for 2 hrs, the viscosity (cP) of MS increased (p<0.05) due to induction by MTGase, whereas no differences were observed at $4^{\circ}C$. However, gel strength values were no different, regardless of incubation temperatures and times. Future research will address how longer incubation times affect the functionality of protein mixed gels mediated by MTGase.

근육단백질과 카제인염 단백질간의 상호작용의 촉매제로서 TGase의 배양시간과 온도에 따른 물성효과를 측정하기 위하여 본 연구를 실시하였다. 돈육 등심부위의 근원섬유단백질을 추출하였고 배양온도는 $4^{\circ}C$, $37^{\circ}C$로, 배양시간은 0, 0.5, 2, 4시간으로 단백질의 열량분석, 점도, 겔 강도, 전기영동상 패턴의 변화를 측정하였다. 단백질열량변화는 각 단백질 별로 열량변화 패턴이 상이하게 나타났으며 근원섬유와 카제인염의 혼합액은 각각의 단백질 피크와 유사하게 나타났고 배양시간과 온도에 따라 차이를 보여 $4^{\circ}C$에 비하여 $37^{\circ}C$에서 열량변화의 차이가 크게 나타났다. 점도의 경우 배양하지 않은 것과 비교했을 때 $37^{\circ}C$에서 2시간 배양했을 때부터 유의적인 차이를 보이며 증가하였다. 근원섬유단백질을 4.5%의 농도로 가열에 의한 겔의 강도를 측정한 결과, 배양시간이나 온도에 따른 뚜렷한 차이를 보이지 않았다. 전기영동의 경우에도 $4^{\circ}C$$37^{\circ}C$의 배양의 경우 myosin heavy chain과 카제인 염 단백질 분획이 배양시간이 경과함에 따라 점차 감소하였고, 특히 $37^{\circ}C$에서 30분까지는 큰 변화를 나타내지 않았으나 2시간부터 32-34 kDa 분자량을 갖는 카제인 염단백질의 저분자의 밴드가 사라지고 고분자의 biopolymer를 형성하였다. 이상의 결과를 종합하면 $4^{\circ}C$보다 $37^{\circ}C$에서 단백질 분자간의 상호작용에 의한 TGase의 효과가 뚜렷하였으며 $37^{\circ}C$에서 2시간 이상 배양시 TGase에 의한 현저한 물성의 차이를 보인 것으로 평가된다.

Keywords

References

  1. Brunton, N. P., Lyng, J. G., Zhang, L., and Jacquier, J. C. (2006) The use of dielectric properties and other physical analyses for assessing protein denaturation in beef biceps femoris muscle during cooking from 5 to $85^{\circ}C$. Meat Sci. 72, 236-244 https://doi.org/10.1016/j.meatsci.2005.07.007
  2. Chin, K. B. and Ahn, E. H. (2005) Evaluation of sodium lactate and potassium lactate on the quality characteristics and shelf-life of low-fat sausage during refrigerated storage. Korean J. Food Sci. Ani. Resour. 25, 52-59
  3. Dimitrakopoulou, M. A., Ambrosiadis, J. A., Zetou, F. K., and Bloukas, J. G. (2005). Effect of salt and transglutaminase (TG) level and processing conditions on quality characteristics of phosphate-free, cooked, restructured pork shoulder. Meat Sci. 70, 743-749 https://doi.org/10.1016/j.meatsci.2005.03.011
  4. Han, D. S., Chun, E. W., Bae, S. S., Chi, G. Y., and Cho, I. S. (2004) Effect viscosity variation on temperature in mixed surfactant system. Appl. Chem. 8, 9-12
  5. Kilic, B. (2003) Effect of microbial transglutaminase and sodium caseinate on quality of chicken doner kebab. Meat Sci. 63, 417-421 https://doi.org/10.1016/S0309-1740(02)00102-X
  6. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriopharge T4, Nature 227, 680-685 https://doi.org/10.1038/227680a0
  7. Lee, B. Y., Kim, D. M., and Kim, K. H. (1991) Measurement of the viscosity of semi-solid foods by extrusion capillary viscometer. J. Korean Soc. Food Nutr. 20, 509-512
  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  9. Mulvihill, D. M. and Ennis, M. P. (2003) Functional milk proteins - production and utilization. In: Advanced dairy chemistry (Part B). Fox, P. F. and McSweeney, P. L. H. (3rd eds), Kluwer Academic/Plenum Publishers, NY, pp. 1175- 1228
  10. Ramiraz-Suarez, J. C. and Xiong, Y. L. (2003) Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/ soy protein mixtures. Meat Sci. 65, 899-907 https://doi.org/10.1016/S0309-1740(02)00297-8
  11. Ramiraz-Suarez, J. C., Addo, K., and Xiong, Y. L. (2005) Gelation of mixed myofibrillar/wheat gluten proteins treated with microbial transglutaminase. Food Res. Int. 38, 1143-1149 https://doi.org/10.1016/j.foodres.2005.04.004
  12. Sakamoto, H., Kumazawa, Y., and Motoki, M. (1993) Strength of protein gels prepared with microbial as related to reaction conditions. J. Food Sci. 59, 866-871 https://doi.org/10.1111/j.1365-2621.1994.tb08146.x
  13. Tang, C. H., Chen, Z., Li, L. and Yang, X. Q. (2006) Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Res. Int. 39, 704-711 https://doi.org/10.1016/j.foodres.2006.01.012
  14. Tseng, C. S. and Lai, H. M. (2002) Physicochemical properties of wheat flour dough modified by microbial transglutaminase. J. Food Sci. 67, 750-755 https://doi.org/10.1111/j.1365-2621.2002.tb10671.x
  15. Vojdani, F. and Whitaker, J. R. (1994) Chemical and enzymatic modification of proteins for improved functionality. In: Protein functionality in food systems. Hettiarachchy, N. S. and Ziegler, G. R. (eds), Marcel Dekker, Inc., NY, Vol. 9, pp. 261-263
  16. Xiong, Y. L. (1993) A comparison of the rheological characteristics of different fractions of chicken myofibrillar proteins. J. Food Biochem. 16, 217-227

Cited by

  1. Evaluation of mungbean protein isolates at various levels as a substrate for microbial transglutaminase and water binding agent in pork myofibrillar protein gels vol.48, pp.5, 2013, https://doi.org/10.1111/ijfs.12066
  2. Interaction between carrageenan/soy protein isolates and salt-soluble meat protein vol.100, 2016, https://doi.org/10.1016/j.fbp.2016.06.014
  3. Application of Microbial Transglutaminase and Functional Ingredients for the Healthier Low-Fat/Salt Meat Products: A Review vol.30, pp.6, 2010, https://doi.org/10.5851/kosfa.2010.30.6.886
  4. Combination of κ-Carrageenan and Soy Protein Isolate Effects on Functional Properties of Chopped Low-Fat Pork Batters During Heat-Induced Gelation vol.8, pp.7, 2015, https://doi.org/10.1007/s11947-015-1516-x
  5. Effect of Transglutaminase Addition on the Physicochemical Properties of Sodium Caseinate and Whey Proteins vol.29, pp.4, 2009, https://doi.org/10.5851/kosfa.2009.29.4.415
  6. Controlling Ingredients for Healthier Meat Products: Clean Label vol.4, pp.2, 2020, https://doi.org/10.22175/mmb.9520