Sol-gel Material Optimization for Aptamer Biosensors

  • Published : 2008.06.30

Abstract

Biochips are a powerful emerging technology for biomedical, environmental applications. Especially, making use of bioseonors in the evaluation of toxicity becomes increasingly important. For biosensor as a toxicity detection, biomolecules like antibodies or aptamers have been developed to specifically capture the toxic target molecules. In addition, the development of optimal chip materials capable of maintaining the activity of embedded biomolecules such as proteins or aptamers has proven challenging. Here, using sol-gel materials, new chip material, whose ability for immobilizing the embedded aptamers and maintaining the ability of embedded aptamers is optimal, was searched. We used sol-gel formulation screening methods previously developed and found the best formulation which shows high sensitive and specific interactions of aptamers. This study results will support the technological advancement for diagnosis and environmental sensor.

Keywords

References

  1. Yi, C. Q., Li, C. W., Ji, S. L. & Yang, M. S. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1-23 (2006) https://doi.org/10.1016/j.aca.2005.12.037
  2. Song, M., Kim, Y. J. & Ryu, J. C. Toxicogenomic study of toxic mechanism on methotrexate, amiodarone, nitrofurantoin and carbamazepine in human bronchial epithelial (BEAS-2B). Molecular & Cellular Toxicology 3:51-59 (2007)
  3. Kim, Y. J., Kim, M. S. & Ryu, J. C. Genotoxicity and identification of differentially expressed genes of formaldehyde in human Jurkat cells. Molecular & Cellular Toxicology 1:230-236 (2005)
  4. Kasemo, B. & Hook, F. Protein and vesicle interaction with surfaces. Abstr Pap Am Chem S 223:U444-U444 (2002)
  5. Brody, E. N. et al. The use of aptamers in large arrays for molecular diagnostics. Mol Diagn 4:381-388 (1999) https://doi.org/10.1016/S1084-8592(99)80014-9
  6. Lee, S. et al. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem Bioph Res Co 358:47-52 (2007) https://doi.org/10.1016/j.bbrc.2007.04.057
  7. Liao, W., Guo, S. & Zhao, X. S. Novel probes for protein chip applications. Front Biosci 11:186-197 (2006) https://doi.org/10.2741/1790
  8. Wang, H. et al. Identification of proteins bound to a thioaptamer probe on a proteomics array. Biochem Bioph Res Co 347:586-593 (2006) https://doi.org/10.1016/j.bbrc.2006.06.132
  9. Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611-647 (1999) https://doi.org/10.1146/annurev.biochem.68.1.611
  10. Sacca, B., Lacroix, L. & Mergny, J. L. The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res 33:1182-1192 (2005) https://doi.org/10.1093/nar/gki257
  11. Park, C. B. & Clark, D. S. Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnol Bioeng 78:229-235 (2002) https://doi.org/10.1002/bit.10238
  12. Gill, I. Bio-doped nanocomposite polymers: Sol-gel bioencapsulates. Chem Mater 13:3404-3421 (2001) https://doi.org/10.1021/cm0102483
  13. Kim, S. et al. Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal Chem 78:7392- 7396 (2006) https://doi.org/10.1021/ac0520487
  14. Langelier, M. F. et al. Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J Biol Chem 276:38652-38657 (2001) https://doi.org/10.1074/jbc.M106422200
  15. Livage, J., Coradin, T. & Roux, C. Encapsulation of biomolecules in silica gels. J Phys-Condens Mat 13: R673-R691 (2001) https://doi.org/10.1088/0953-8984/13/33/202
  16. Ekins, R. & Chu, F.W. Microarrays: their origins and applications. Trends Biotechnol 17:217-218 (1999) https://doi.org/10.1016/S0167-7799(99)01329-3
  17. Boury, B. & Corriu, R. J. P. Adjusting the porosity of a silica-based hybrid material. Adv Mater 12:989-992 (2000) https://doi.org/10.1002/1521-4095(200006)12:13<989::AID-ADMA989>3.0.CO;2-K
  18. Fujii, T., Yano, T., Nakamura, K. & Miyawaki, O. The sol-gel preparation and characterization of nanoporous silica membrane with controlled pore size. J Membrane Sci 187:171-180 (2001) https://doi.org/10.1016/S0376-7388(01)00338-6
  19. Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591-594 (2003) https://doi.org/10.1038/nmat957
  20. Gill, I. & Ballesteros, A. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Trends Biotechnol 18:282-296 (2000) https://doi.org/10.1016/S0167-7799(00)01457-8