DOI QR코드

DOI QR Code

Ginsentology III;Identifications of Ginsenoside Interaction Sites for Ion Channel Regulation

  • Choi, Sun-Hye (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Shin, Tae-Joon (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Byung-Hwan (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Jun-Ho (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Hwang, Sung-Hee (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Pyo, Mi-Kyung (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • Published : 2008.06.30

Abstract

A ligand - whether an endogenous hormone, neurotransmitter, exogenous toxin or synthetic drug - binds to plasma membrane proteins (e.g., ion channels, receptors or other functional proteins) to exert its physiological or pharmacological effects. Ligands can also have functional groups, showing stereospecificity for interaction sites on their counterpart plasma membrane proteins. Previous reports have shown that the ginsenoside Rg$_3$, a bioactive ginsenoside, meets these criteria in that: 1) an aliphatic side chain of $Rg_3$ plays a role as a functional group, 2) Rg$_3$ regulates voltage- and ligand-gated ion channels in a stereospecific manner with respect to carbon-20, and 3) $Rg_3$ regulates subsets of ligand-gated and voltage-gated ion channels through specific interactions with identified amino acid residues inside the channel pore, in the outer pore entryway, or in toxin binding sites. Rg$_3$, therefore, could be a candidate for a novel ginseng-derived glycosidic ligand regulating ion channels and receptors. This review will examine how Rg$_3$ regulates voltage-gated and ligand-gated ion channels through interactions with its target proteins in the plasma membrane. Hopefully, this review will advance understanding of ginseng pharmacology at the cellular and molecular levels.

Keywords

References

  1. Tyler, V. E. J Pharm Technol 11, 214-220 (1995) https://doi.org/10.1177/875512259501100510
  2. Nah, S. Y., Kim, D. H., and Rhim, H. CNS Drug Rev. 13, 381-404 (2007)
  3. Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Nam, G., Jeong, S. M., Lee, B. H, Lee, S. M., and Nah, S. Y. Mol Cells. 19, 137-142 (2005)
  4. Jeong, S. M., Lee, J. H., Kim, J. H, Lee, B. H., Yoon, I. S., Lee, J. H., Kim, D. H., Rhim, H., Kim, Y., and Nah, S. Y. Mol. Cells 18, 383-389 (2004)
  5. Lee, J. H., Lee, B. H., Choi, S. H., Yoon, I. S., Shin, T. J., Pyo, M. K., Lee, S. M., Kim, H. C., and Nah, S. Y. Brain Res. 1203, 61-67 (2008) https://doi.org/10.1016/j.brainres.2008.01.078
  6. Dascal, N. CRC Crit. Rev. Biochem. 22, 317-387 (1987) https://doi.org/10.3109/10409238709086960
  7. Keramidas, A., Moorhouse, A. J., Schofield, P. R., and Barry, P. H. Prog. Biophys. Mol. Biol. 86, 161-204 (2004) https://doi.org/10.1016/j.pbiomolbio.2003.09.002
  8. Lummis, S. C. Biochem. Soc. Trans. 32, 535-539 (2004) https://doi.org/10.1042/BST0320535
  9. Dang, H., England, P.M., Farivar, S.S., Dougherty, D.A., Lester, H. A. Mol. Pharmacol. 57, 1114-1122 (2000)
  10. Lopreato, G. F., Banerjee, P., and Mihic, S. J. Mol. Brain Res. 118, 45-51 (2003) https://doi.org/10.1016/S0169-328X(03)00332-2
  11. Zhang, L., Hosoi, M., Fukuzawa, M., Sun, H., Rawlings, R. R., and Weight, F. F. J. Biol. Chem. 277, 46256-46264 (2002) https://doi.org/10.1074/jbc.M207683200
  12. Hu, X. Q., Zhang, L., Stewart, R. R., and Weight, F. F. J. Biol. Chem. 278, 46583-46589 (2003) https://doi.org/10.1074/jbc.M308974200
  13. Lee, B. H., Lee, J. H., Lee, S. M., Jeong, S. M., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Rhim, H., Kim, H. C., Jang, C. G., Lee, B. C., Park, C. S., and Nah, S. Y. Neuropharmacology 52, 1139-1150 (2007) https://doi.org/10.1016/j.neuropharm.2006.12.001
  14. Reeves, D. C., Goren, E. N., Akabas, M. H., and Lummis, S. C. J. Biol. Chem. 276, 42035-42042 (2001) https://doi.org/10.1074/jbc.M106066200
  15. Panicker, S., Cruz, H., Arrabit, C., and Slesinger, P. A. J. Neurosci. 22, 1629-1639 (2002) https://doi.org/10.1523/JNEUROSCI.22-05-01629.2002
  16. Le Novere, N. and Changeux, J. P. Nucleic Acid Res. 27, 340-342 (1999) https://doi.org/10.1093/nar/27.1.340
  17. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, J. H., Kim, D. H., Park, C. S., Lee, S. M., and Nah, S. Y. Mol. Cells 18, 115-121 (2004)
  18. Lee, B. H., Lee, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Shin, T. J., Pyo, M. K., Choi, W. S., Lee, S. M., Lim, Y., Rhim, H., and Nah, S. Y. Biol Pharm Bull. 30, 1721-1726 (2007) https://doi.org/10.1248/bpb.30.1721
  19. Hille, B., Ion channels of excitable membranes. Sinauer Associates, Inc, Sunderland, MA (2001)
  20. Patel, S. P. and Campbell, D. L. J Physiol. 569, 7-39 (2005)
  21. Lee, J. H., Lee, B. H., Choi, S. H., Yoon, I. S., Pyo, M. K., Shin, T. J., Choi, W. S., Lim, Y., Rhim, H., Won, K. H., Lim, Y. W., Choe, H., Kim, D. H., Kim, Y. I., and Nah, S. Y. Mol Pharmacol. 73, 619-626 (2008) https://doi.org/10.1124/mol.107.040360
  22. Watanabe, I., Zhu, J., Recio-Pinto, E., and Thornhill, W. B. J Biol Chem 279, 8879-8885 (2004) https://doi.org/10.1074/jbc.M309802200
  23. Fedida, D. and Hesketh, J. C. Prog Biophys Mol Biol 75, 165-199 (2001) https://doi.org/10.1016/S0079-6107(01)00006-2
  24. Magidovich, E. and Yifrach, O. Biochemistry 43, 13242-13247 (2004) https://doi.org/10.1021/bi048377v
  25. Claydon, T. W., Makary, S. Y., Dibb, K. M., and Boyett, M. R. Biophys J 87, 2407-2418 (2004) https://doi.org/10.1529/biophysj.103.039073
  26. Bett, G. C. and Rasmusson, R. L. J Physiol 556, 109-120 (2004) https://doi.org/10.1113/jphysiol.2003.055012
  27. Pardo, L. A., Heinemann, S. H., Terlau, H., Ludewig, U., Lorra, C., Pongs, O. and Stuhmer, W. Proc Natl Acad Sci U S A 89, 2466-2470 (1992) https://doi.org/10.1073/pnas.89.6.2466
  28. Sali, A. and Blundell, T. L. J Mol Biol 234, 779-815 (1993) https://doi.org/10.1006/jmbi.1993.1626
  29. Lu, G. and Moriyama, E. N. Brief Bioinform 5, 378-388 (2004) https://doi.org/10.1093/bib/5.4.378
  30. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., and Taylor, R. D. Proteins 52, 609-623 (2003) https://doi.org/10.1002/prot.10465
  31. Goldin, A. L., Voltage-gated $Na^+$ channels. In: North, R.A. (Ed.), Ligand- and voltage-gated ion channels. CRC Press, Boca Raton, FL, pp. 73-89 (1995)
  32. Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., Choi, S. H., Kim, D. H., Rhim, H., Kim, S. S., Kim, J. I., Jang, C. G., Song, J. H., and Nah, S. Y. Mol Pharmacol. 68, 1114-1126 (2005) https://doi.org/10.1124/mol.105.015115
  33. Kang, D. I., Lee, J. Y., Yang, J. Y., Jeong, S. M., Lee, J. H., Nah, S. Y., and Kim, Y. Biochem Biophys Res Commun. 333:1194-1201 (2005) https://doi.org/10.1016/j.bbrc.2005.06.026
  34. Stuart, G. J. and Sakmann, B. Nature 367, 60-72 (1994)
  35. Wang, S. Y., Wang, G. K. Proc. Natl. Acad. Sci. USA. 95, 2653-2658 (1998) https://doi.org/10.1073/pnas.95.5.2653
  36. Noda, M, Suzuki, H, Numa, S, and Stuhmer, W. FEBS Lett 259, 213-216 (1989) https://doi.org/10.1016/0014-5793(89)81531-5
  37. Terlau, H., Heinemann, S. H., Stuhmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S. FEBS Lett 293, 93-96 (1991) https://doi.org/10.1016/0014-5793(91)81159-6
  38. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. Science (Wash DC) 265, 1724-1728 (1994) https://doi.org/10.1126/science.8085162
  39. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. Proc Natl Acad Sci USA 93, 9270-9275 (1996) https://doi.org/10.1073/pnas.93.17.9270