DOI QR코드

DOI QR Code

자기펄스 성형법에 의한 TiO2 나노 분말의 치밀화

Densification of TiO2 Nano Powder by Magnetic Pulsed Compaction

  • Kim, Hyo-Seob (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Jeong-Goo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Koo, Jar-Myung (Division of Advanced Materials Engineering, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University)
  • 발행 : 2008.08.31

초록

In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of $TiO_2$ bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and $TiO_2$ nano powder for the compaction of $TiO_2$ nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.

키워드

참고문헌

  1. C. Qianwang, Q. Yitai, C. Zuyao, Z. Guien and Z. Yuheng, Mater. Sci. Eng., B31, 261 (1995) https://doi.org/10.1016/0921-5107(94)01150-8
  2. J. -H. Song, J. -S. Lee, I. -S. Park and D. -Y. Lim, J. Kor. Ceram. Soc., (in Koran), 37, 625 (2000)
  3. A. Kumpmann, B. Gnther and H. -D. Kunze, Mater. Sci. Eng., A168, 165 (1993) https://doi.org/10.1016/0921-5093(93)90722-Q
  4. M. E. Washburn, Am. Ceram. Soc. Bull., 67(2), 356 (1998)
  5. S. -C. Liao, K. -D. Pae and W. -E. Mayo, Mater. Sci. Eng., A204, 152 (1995) https://doi.org/10.1016/0921-5093(95)09952-2
  6. S. Zhao, X. Song, I. Zang and X. Liu, Mater. Sci. Eng., A473, 323 (2008) https://doi.org/10.1016/j.msea.2007.04.094
  7. C. C. Jia, H. Tang, X. Z. Mei, F.Z. Yin and X.H. Qu, Mater. Lett., 59, 2566 (2005) https://doi.org/10.1016/j.matlet.2005.04.002
  8. B. H. Rabin, G. E. Korth and R. L. Williamson, J. Am. Ceram. Soc., 73, 2156(1990) https://doi.org/10.1111/j.1151-2916.1990.tb05294.x
  9. S. J. Hong, G. H. Lee, C. K. Rhee, W. W. Kim and K. S. Lee, Mater. Sci. Eng., A449-451, 401 (2007) https://doi.org/10.1016/j.msea.2006.02.401
  10. R. A. Andrievski, Int. J. Powder Met., 30, 59 (1994)
  11. H. W. Lee, J. H. Lee, H. W. Jun and H. Moon, J. Kor. Ceram. Soc., (in Koran), 37, 1072 (2000)