
스트링의 최대 서픽스를 계산하는 효율적인 외부 메모리 알고리즘 239

스트링의 최대 서픽스를 계산하는
효율적인 외부 메모리 알고리즘

김 성 권
†
․김 수 철

††
․조 정 식

††

요 약

외부 메모리 계산 모델에서 스트링의 최대서픽스를 찾는 문제를 고려한다. 외부메모리 모델에서는 디스크와 내부메모리 사이의 디스크 입출

력 횟수를 줄이는 알고리즘을 설계하는 것이 중요 사항이다. 길이가 N인 스트링은 N개의 서픽스를 가지는데, 이중에서 사전 순서에 따라 가장

큰 것을 최대 서픽스라 부른다. 최대서픽스를 구하는 것은 여러 스트링 문제를 해결하는 데 중요한 역할을 한다.

본 논문에서는 길이가 N인 스트링의 최대 서픽스를 구하는 외부메모리 알고리즘을 제시한다. 이 알고리즘은 네 개의 내부 메모리 블록을

사용하고 최대 4(N/L)번의 디스크 입출력을 한다. 여기서 L은 블록의 크기이다.

키워드 : 스트링, 최대 서픽스, 외부메모리 알고리즘

Efficient External Memory Algorithm
for Finding the Maximum Suffix of a String

Sung Kwon Kim
†
․Soo-Cheol Kim

††
․Jung-Sik Cho

††

ABSTRACT

We study the problem of finding the maximum suffix of a string on the external memory model of computation with one disk. In this

model, we are primarily interested in designing algorithms that reduce the number of I/Os between the disk and the internal memory. A

string of length  has  suffixes and among these, the lexicographically largest one is called the maximum suffix of the string. Finding

the maximum suffix of a string plays a crucial role in solving some string problems.

In this paper, we present an external memory algorithm for computing the maximum suffix of a string of length  . The algorithm

uses four blocks in the internal memory and performs at most 4 disk I/Os, where  is the size of a block.

Keyword : External Memory Algorithms, Maximum Suffix, Strings

1. Introduction1)

 Let ∑ be an alphabet. Let  and  be two strings over ∑.

If s is lexicographically less than  , we denote this by   .

Let    , where N is the length of  . For  ≤ ≤ ≤  ,

 is a substring of  . The substrings with   are called

prefixes and those with   are called suffixes.  has N

suffixes. Among these the lexicographically largest one is

called the maximum suffix of  , denoted   .

 The maximum suffix of a string can be found in linear time

[2, 3]. Finding the maximum suffix of a string is a key

operation in solving the following four string problems: string

matching, period finding, computing the minimum of a circular

※ 이 논문은 2007년도 중앙대학교 학술연구비 지원에 의한 것임.
 †종신회원:중앙대학교 컴퓨터공학과 교수
††정 회 원 :중앙대학교 컴퓨터공학과 박사과정
 논문접수: 2008년 4월 8일
 수 정 일 : 2008년 6월 13일
 심사완료: 2008년 6월 16일

string, and Lyndon decomposition [7]. The string matching

is to find the occurrences of a pattern in a text, and the

Knuth-Morris-Pratt algorithm [6] is one of the well-known

algorithms for the problem. A string  is said to be the period

of another string  if   ′ , where ′ is a prefix of  and
 is as short as possible. In other words, repeating  copies

of  and appending ′ after it results in t. The period of a
string can be computed in linear time [2]. String  has 

circular shifts, namely   for  ≤ ≤  . The

minimum of a circular string is the lexicographically smallest

one among these circular shifts. Shiloach [8] gives a linear

time algorithm for the problem. The Lyndon decomposition

decomposes the string  into    , where the strings

  are lexicographically non-increasing and each 

 ≤ ≤  is strictly less than any of its circular shifts except

for  itself. The Lyndon decomposition of a string can be

found by the algorithm due to Duval [5].

 Roh et al. [7] presents external memory algorithms for the

DOI: 10.3745/KIPSTA.2008.15-A.4.239

240 정보처리학회논문지 A 제15-A권 제4호(2008.8)

maximum suffix problem, and solves the four problems either

directly employing the maximum suffix algorithms or

indirectly using variations of the algorithms. More efficient

external memory algorithms for the maximum suffix problem

also will improve the external memory algorithms for the four

problems.

 Two external memory algorithms for computing the

maximum suffix of a string are presented in [7]. One of them

maintains four blocks in the internal memory and uses at most

6 disk I/Os. The other uses six blocks and performs 4

 disk I/Os. Our algorithm will perform 4 disk I/Os

with only four blocks in the internal memory.  is the block

size.

 In Section 2, we review the internal memory algorithms

described in [4, 7]. Our external memory algorithm and its

analysis will be given in Section 3. In Section 4, we give some

concluding remarks.

2. Preliminaries

 Consider a prefix     of  , where  ≤   ≤    .

Let    and let be the string such that    . Since

 is a string, it can be represented as  ′ , where  is
the period of  . Then   ′ . Let  and  be integers such
that       , and   . Then    ,

   and ′  . Let  be another integer such
that ′      . Figure 1 depicts a decomposition of 
and the relationship between the variables.

 For example, if ∑   and    , then    ,

      ,    , and ′   . And,  = 4,  = 8,  = 2, and
 = 5.

 We now review the internal memory algorithm in [4] and

[7], which has been adapted and modified for our purpose.

Knowing   and the values of ′    and  for
 , let us try to compute the maximum suffix of ′   .
Since ′ is a prefix of  ′       . Compare  and
. Based on the result of this comparison, there are four cases

(1)-(4) to consider.

 (1)    : In this case we have ′    , and
′←′. If ′  , nothing further is done. (2) If ′  , then
another  has been found, and thus ←   and ′← .
 (3)   : We also have ′    . However, ′ is
not a prefix of  , and thus  is no longer a period. The new

period is , and ← and ′← .
 (4)   : Since ′   , it will be the case that
′     . So, ← and we have to compute
′   ′   .



  …  
    ′

(Fig. 1) Decomposition of  .

 Based on the case analysis, Figure 2 shows the internal

memory algorithm IMMS(), which returns  at its

completion. Then,     .

3. External Memory Algorithm

 We assume that there is only one disk. Let L be the size

of a block, meaning that a block of L characters long is read

from the disk into the internal memory at once. Assume that

≥  . Let    be the input string. For convenience,

assume that N/L is an integer. Partition  into blocks

 , where        

     . For  ≤ ≤   , denotes the index of the

block which  belongs to, i.e.,         ≤ ≤  .

 Two external memory algorithms for computing the

maximum suffix of a string are presented in [7]. One of them

maintains four blocks in the internal memory,  , and  ,

which have the blocks accessed by a, c, b, and d, respectively.

This algorithm uses at most 6(N/L) disk I/Os. The other uses

six blocks,  , , , and  , and performs 4(N/L) disk

I/Os.   and   have the block next to A and B, respectively.

 Our external memory algorithm, called EMS, is shown in

(Figure 3). EMS exactly follows the internal memory

algorithm in (Figure 2). EMS maintains four blocks in the

internal memory,   and  . The blocks  and 

always have the blocks that are accessed by the indices a,

c and d, respectively. In other words,        and

  . 
 has the block next to A, i.e.,    if 

≤   and  󰍋, otherwise. Another block  appears in
comments. The block  is imaginary in the sense that it never

resides in the internal memory and thus never appears in

executable statements, but it assumed to always   . It

is used only for the purpose of analysis of complexity. In EMS,

← denotes assignments between internal memory locations,

and ⇐ (denotes assignments from the disk into a block in

the internal memory. For a block  in the internal memory,

next() denotes the block next to  , i.e., if    then next

()  for  ≤ ≤   and next() = undefined for

   .

 Initially, EMS assigns ←←⇐ and 
⇐.

 In case (1), after executing ←′  EMS checks if  , which
will be accessed at the next iteration of the while loop, is still

in the internal memory. If   ′  , nothing needs to be
done because the block  already has  , Otherwise,  needs

to be updated so that the new block  contains  . If

′   ′  (i.e., if   ), then  is in  , and so ← .
If ′ ≠ ′  , EMS reads the next block of  from the disk,
 ⇐ next(). After executing ←′  , EMS does similar
operations to  and  as it does to  and  above, to make

sure that  is in  at the next iteration.

 In case (2), EMS assigns ← after executing ←′ . After
increasing ←′  , EMS executes the same operations to 
and  as in case (1).

스트링의 최대 서픽스를 계산하는 효율적인 외부 메모리 알고리즘 241

 ←←←

 ←←

 while ≤  

 if  

(1) if      ′ 
 ← 

← 

(2) else  ′ 
 ←

← 
←

(3) else if  

 ←
← 
←
← 

(4) else    
 ←←

← 
←
←

 return 

(Fig. 2) Internal memory algorithm[4, 7]

 Case (3) is similar to case (2).

 In case (4), after executing ←←′ , we need to make 
and  have     ′ . If ′ ≠ ′  (i.e., if ≠), then
′  has to be read from the disk and assigned to  and
 , ← ⇐′ . Since  has been changed, we have to update
  next (). If ′ ≠ ′   ′  (i.e., if ≠  ), then
′  is already in the internal memory and it is sufficient
to do ← and to update   next(). Otherwise (i.e., if

    ), nothing is to be done.

 EMS then increases  and assigns it to  , ← ′  and ←.
At this point, EMS has      . We check if  and ′ belong
to different blocks by comparing ′ and   . If they are
different, then ← ; otherwise ← .

 It will shown that EMS performs at most 4N/L disk inputs

by an amortized analysis [1]. Initially it is assumed that EMS

assigns N/L tokens to each of four blocks    and  .

An internal memory block has to pay one token to the disk

whenever it inputs a new block from the disk. In EMS, for

each assignment ⇐ , a comment line states which block pays

for it. In case (2) and (3),  gives ′   ′  tokens to 
and in case (4),   gives ′   ′  tokens to  .
   pays one token for reading  at the start of EMS. In

case (4)  advances from ′ to ′ , skipping
′   ′  blocks. See Figure 4. This number of toke‑ ns

are delivered to  . Since a never decreases during the

execution of EMS,  never moves backwards, i.e., never goes

from  to  for    . So, the total number of tokens given

to  by   is




′   ′  ≤  

Hence,  spends at most N/L tokens.

 Since  never decreases,  also never moves backwards.

In case (2) and (3)  advances from ′  to ′ , skipping
′   ′  blocks, as shown in Figure 5. Note that after ←  ,
it has to be    . This number of tokens are given to  .

So, the total number of tokens given to  is bounded by




′   ′  ≤  

Hence, B spends at most N/L - 1 tokens.

  gets a new block both at the start of the algorithm and

every occurrence of in case (4). Whenever  gets a new block,

 has to change its block by reading next() from the disk.

C pays one token for each of these inputs into  . That is,

the initial reading of  ⇐ and every reading of 
⇐ next

() in case (4) are paid for by  . Note that it holds that   

 ←←← ←←

←←⇐  

 ⇐  
 while ≤  
 ′← ′← ′← ′←
 if  

(1) if    
 ←′ 
 if′ ≠ 
 if′   ′   ← 
 else  ⇐ next(); // C pays
 ← ′ 
 if′ ≠ 
 if′ ≠ ′   ← 
 else  ⇐ next(); // D pays
(2) else // B gives ′   ′  tokens to C
 ←′

←
←′  ←

 if′ ≠ 
 if′ ≠ ′   ← 
 else  ⇐ next(); // D pays
(3) else if   // B gives ′    tokens to C
 ←′

←
←′  ← ← 

 if′ ≠ 
 if′   ′   ← 
 else  ⇐ next(); // D pays
(4) else //   gives ′   ′  tokens to D
 ←←′
 if′ ≠ ′ 
 ←⇐′   ⇐ next(); // C pays two tokens
 else if′ ≠ ′ 
 ←  ⇐ next(); // C pays
 ←′  ← ←
 if′ ≠   ← 
 else ←
 return 

(Fig. 3) EMS: External memory algorithm

(Fig. 4) Case(4): The first half of case(4) changes from the

top to the middle; the second half changes from the middle to

the bottom (either   ).

242 정보처리학회논문지 A 제15-A권 제4호(2008.8)

(Fig. 5) Case (2),(3): ⇐ changes from the top to the

middle; ← changes from the middle to the bottom.

at the times of these readings. If    , then next()   .

In this case,  ⇐ next() will be replaced by  ← (EMS

exactly does this way in case (1). This will save one token

for  . This token saved by  is used to pay in advance for

getting a new block to  .

  also pays one token for  ⇐′  in case (4). This happens
when ′ ≠ ′  , i.e., when ≠ . Assignment  ⇐′ 
advances  at least one block from the current position. This

“free” advancement of  is used for the payment.

 Now we need to show that  has a sufficient number of

tokens for paying for the readings into   as well as the

readings into  .  has N/L tokens at the start.  receives

′ ≠ ′  tokens from  in case (2) and (3). By doing ⇐
in case (2) and (3),  moves backwards from ′  to ′ ,
retreating ′   ′  blocks. To get back to the original
block ′ ,  has to input ′   ′  blocks in the worst
case. See Figure 5. One of these disk inputs can be saved

due to  . So,  needs ′   ′    more tokens. Since
′ ′  ′ ′ , we have either ′   ′   ′   ′  ,
′′  ′′, or ′   ′   ′   ′    . In
any case, ′   ′    ≤ ′   ′  . So,  receives from
 a sufficient number of tokens.

 In case (4),  moves backwards from ′  either to
  ′  retreating ′    ′  blocks, or to   ′ 
retreating ′   ′    blocks. Returning to the original
position ′  from A requires at most ′   ′  block
inputs from the disk. One of these block inputs can be saved

due to  . So, returning to the original position ′  from
 requires at most ′   ′    block inputs from the disk.
See Figure 4. In either case,  needs at most ′   ′   
extra tokens.  gives ′   ′  tokens to  . Since
′ ′  ′ ′  ′ ′ , it is easy to see that ′   ′  ≥
′   ′    . So,  is given by   a number of tokens that
is enough to go back to the original position.

[Theorem 1] Given a string of length  , on the one-disk

external memory model with block size  , the maximum suffix

of the string can be found using at most 4⌈⌉ disk I/Os.

4. Conclusions

 An external memory algorithm for computing the maximum

suffix of a string has been presented. The algorithm uses four

blocks in the internal memory and performs at most 4(N/L)

disk I/Os. One of the future works is to decrease the number

of disk I/Os while still using four blocks.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,

Introduction to Algorithms, Second Ed., MIT Press and

McGraw-Hill, 2001.

[2] M. Crochemore, String matching and periods, Bulletin of the

EATCS, Vol.39, pp.149-153, 1989.

[3] M. Crochemore, String matching on ordered alphabets, Theor.

Comput. Sci., Vol.92, No.1, pp.33-47, 1992.

[4] M. Crochemore and D. Perrin, Two-way string matching, J.

ACM, Vol.38, No.3, pp.651-675, 1991.

[5] J.P. Duval, Factoring words over an ordered alphabet, J.

Algorithms, Vol.4, No.1, pp.363-381, 1983.

[6] D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern

matchings in strings, SIAM J. Comp., Vol.6, No.2, pp.323-350,

1977.

[7] K. Roh, M. Crochemore, C.S. Iliopoulos, and K. Park, External

Memory Algorithms for String Problems, Proceedings of the

17th Australasian Workshop on Combinatorial Algorithms,

Central Australia, July 2006.

[8] Y. Shiloach, Fast canonization of circular strings, J.

Algorithms, Vol.2, pp.107-121, 1981.

[9] J.S. Vitter, External memory algorithm and data structures:

dealing with massive data, ACM Computing Surveys, Vol.33,

No.2, pp.209-271, 2001.

김 성 권
e-mail : skkim@cau.ac.kr

1981년 서울대학교 계산통계학과(학사)

1983년 한국과학기술원 전산학과(공학석사)

1990년 8월 University of Washington

전산학과(공학박사)

1991년 3월～1996년 2월 경성대학교 전자

 통계학과 조교수

1996년 3월～현 재 중앙대학교 컴퓨터공학과 교수

관심분야 : 계산기하학, 생물정보학, 암호응용 및 정보보호 등

김 수 철
e-mail : sckim@alg.cse.cau.ac.kr

2004년 중앙대학교 컴퓨터공학과(학사)

2007년 중앙대학교 컴퓨터공학과(공학석사)

2007년 3월～현 재 중앙대학교 컴퓨터공학과

박사과정

관심분야 : RFID 보안, Sensor network

 보안, 암호응용 및 정보보호 등

조 정 식
e-mail : mfg@alg.cse.cau.ac.kr

2003년 강남대학교 전자계산학과(학사)

2005년 중앙대학교 컴퓨터공학과(공학석사)

2005년 3월～현 재 중앙대학교 컴퓨터공학과

박사과정

관심분야 : RFID 보안, Sensor network

 보안, 암호응용 및 정보보호 등

