AEZIO] A MEAE AlMtste 28H2 Q2 HZE| ¥1Uels 239
DOI: 10.3745/KIPSTA.2008.15-A.4.239

o

$oulRe) A Bl AEe] AARAE FE BAS weiHeh O¥ulRe BdeldE tlxash yrue Aelo) txd 9%
055 Folt duBES AAsks Aol 2o AFFelth o]k Nol £EGE N9 AfAg X, olFalA A Aol wet 71
o) ARze Bed AYARAE Pk AL o AEY AT ddske O Fod 43 d

FoNE Lok Nol 29| Ay Ag2g ohe 9 FueEe APt o] FmeAFe vl e U vy B5e

= % =4
Hata Ao AN/DWe vz 429S 3k o7]M Le 859 A7tk

ru
r’rm >}L ot

o

=

>~

IIY= - AEE, A0 MTA, R0 ZE 2DIF

Efficient External Memory Algorithm
for Finding the Maximum Suffix of a String

Sung Kwon Kim' - Soo-Cheol Kim™ - Jung-Sik Cho™

ABSTRACT

We study the problem of finding the maximum suffix of a string on the external memory model of computation with one disk. In this
model, we are primarily interested in designing algorithms that reduce the number of I/Os between the disk and the internal memory. A
string of length & has N suffixes and among these, the lexicographically largest one is called the maximum suffix of the string. Finding
the maximum suffix of a string plays a crucial role in solving some string problems.

In this paper, we present an external memory algorithm for computing the maximum suffix of a string of length ~. The algorithm
uses four blocks in the internal memory and performs at most 4(~N/L) disk I/Os, where L is the size of a block.

Keyword : External Memory Algorithms, Maximum Suffix, Strings

1. Introduction string, and Lyndon decomposition [7]. The string matching
is to find the occurrences of a pattern in a text, and the
Let X be an alphabet. Let s and ¢ be two strings over .. Knuth-Morris-Pratt algorithm [6] is one of the well-known

algorithms for the problem. A string » is said to be the period
of another string ¢ if t = v, Where «' is a prefix of » and

If s is lexicographically less than ¢, we denote this by s< t.
Let ¢ = ¢t,...t, where N is the length of ¢. For 1<a<b< N,
t,...t, is a substring of ¢. The substrings with o= 1 are called
prefixes and those with »= ~ are called suffixes. + has N

w 18 as short as possible. In other words, repeating e copies
of »w and appending ' after it results in ¢. The period of a
string can be computed in linear time [2]. String ¢ has ~
circular shifts, namely ¢,.ty,...t;_, for 1<i<nN. The
minimum of a circular string is the lexicographically smallest
one among these circular shifts. Shiloach [8] gives a linear
time algorithm for the problem. The Lyndon decomposition

suffixes. Among these the lexicographically largest one is
called the maximum suffix of ¢, denoted ms(t).

The maximum suffix of a string can be found in linear time
[2, 3]. Finding the maximum suffix of a string is a key
operation in solving the following four string problems: string

. e) .. . decomposes the string ¢ into ¢ = w,w,...w,, Where the strings
matching, period finding, computing the minimum of a circular . .
wy,w,,...w, are lexicographically non-increasing and each w,
¥ o] w=RL 007U Fousta s&d T A oF A (1 <i<n) is strictly less than any of its circular shifts except
T: z%f%?’:l?ﬁﬂ i‘fgggfﬁ S;Lf};} . for w, itself. The Lyndon decomposition of a string can be
w4 2008d 49 82 found by the algorithm due to Duval [5].
4 920089 69 13% .
AAFehg 20089 69 169 Roh et al. [7] presents external memory algorithms for the

240 ZEMEIE=2X A M15-AT M4=(2008.8)

maximum suffix problem, and solves the four problems either
directly employing the maximum suffix algorithms or
indirectly using variations of the algorithms. More efficient
external memory algorithms for the maximum suffix problem
also will improve the external memory algorithms for the four
problems.

Two external memory algorithms for computing the
maximum suffix of a string are presented in [7]. One of them
maintains four blocks in the internal memory and uses at most
6(~/L) disk I/Os. The other uses six blocks and performs 4
(~v/z) disk I/Os. Our algorithm will perform 4(~v/z) disk I/Os
with only four blocks in the internal memory. £ is the block
size.

In Section 2, we review the internal memory algorithms
described in [4, 7]. Our external memory algorithm and its
analysis will be given in Section 3. In Section 4, we give some
concluding remarks.

2. Preliminaries

Consider a prefix s= t¢,...t,_, of ¢, where 2<d—1< ~N—1.
Let y= ms(s) and let zbe the string such that s= zy. Since
y 1s a string, it can be represented as y= w‘w’, Where w 18
the period of y. Then s= zww’. Let «,b and p be integers such
that lzl=a—1,lzwl=b-1, and lwi=p. Then z=1t,.t, .,
w'=t,..t,_, and w'= t,..t,_,. Let ¢ be another integer such
that lw'l=d—b=c¢—a. Figure 1 depicts a decomposition of s
and the relationship between the variables.
z=fffiw=gf,e=2,and w' =g. And, « =4, b =8 p = 2, and
c =

We now review the internal memory algorithm in [4] and
[7], which has been adapted and modified for our purpose.
Knowing ms(s) and the values of z,w,e,w’,a,b, ¢ and p for
s, let us try to compute the maximum suffix of s'= st,=1t,...t,.
Since w’ is a prefix of w, w' = t,...t._, = t,...t,_,. Compare ¢, and
t,. Based on the result of this comparison, there are four cases
(1)-(4) to consider.

(1) t+,=t, : In this case we have ms(s') =ms(s)t,, and
w'—w't,. If w'l< lwl, nothing further is done. (2) If lw'|=lwl, then
another w has been found, and thus e<e+1 and w'<e.

(3) ¢, >t,; We also have ms(s') = ms(s)t,. However, w't, is
not a prefix of w, and thus w is no longer a period. The new
period is , and e<1 and w'<e.

(4) t,<t,; Since w't,>w, it will be the case that
ms(s’) >ms(s). So, z<—zw® and we have to compute

ms(s’')=ms(w'ty) =ms(t,...t,).

T w, Wo w, w

(Fig. 1) Decomposition of s.

Based on the case analysis, Figure 2 shows the internal
memory algorithm IMMS(¢), which returns o at its
completion. Then, ms(t) =t,...t .

3. External Memory Algorithm

We assume that there is only one disk. Let L be the size
of a block, meaning that a block of L characters long is read
from the disk into the internal memory at once. Assume that
L=2. Let t=t,.ty, be the input string. For convenience,
assume that N/L is an integer. Partition ¢ into blocks
Ky Ky, Where Ky=tyoty, o K= t_yyey bipeen Ky =
tv/i—1)r+ 1ty FOT 1< a< N, bi(a), denotes the index of the
block which ¢, belongs to, ie., bi(a)=iif(i—1)L+1 < a < iL.

Two external memory algorithms for computing the
maximum suffix of a string are presented in [7]. One of them
maintains four blocks in the internal memory, 4,¢, B, and D,
which have the blocks accessed by a, ¢, b, and d, respectively.
This algorithm uses at most 6(N/L) disk I/Os. The other uses
six blocks, 4,0,8,0,4%, and B", and performs 4(N/L) disk
1/Os. 4* and B* have the block next to A and B, respectively.

Our external memory algorithm, called EMS, is shown in
(Figure 3). EMS exactly follows the internal memory
algorithm in (Figure 2). EMS maintains four blocks in the
internal memory, 4,47, ¢ and D. The blocks 4,¢ and D
always have the blocks that are accessed by the indices a,
c and d, respectively. In other words, 4 = &, , C= K, and
D= K. A" has the block next to 4, i.e, A" = Ky, if bi(a)
< N/L—1 and 4"=0, otherwise. Another block B appears in
comments. The block pBis imaginary in the sense that it never
resides in the internal memory and thus never appears in
executable statements, but it assumed to always B= k&, It
is used only for the purpose of analysis of complexity. In EMS,
« denotes assignments between internal memory locations,
and < (denotes assignments from the disk into a block in
the internal memory. For a block x in the internal memory,
next(x) denotes the block next to x, ie., if x= &, then next
(x)=kK,., for 1<i< ~N/L—1 and next(x) = undefined for
i=N/L.

Initially, EMS assigns A< D<K, and 4 <K,.

In case (1), after executing c—c +1 EMS checks if ¢,, which
will be accessed at the next iteration of the while loop, is still
in the internal memory. If vi(c) =bi(¢’), nothing needs to be
done because the block ¢ already has t,, Otherwise, ¢ needs
to be updated so that the new block ¢ contains ¢,. If
bi(a’)=1bi(c) (Le, if 4=¢), then t, isin 4", and so c—4".
If vi(a’) = bi(¢"), EMS reads the next block of ¢ from the disk,
cenext(c). After executing d—d +1, EMS does similar
operations to ¢ and D as it does to ¢ and ¢ above, to make
sure that ¢, is in » at the next iteration.

In case (2), EMS assigns ¢—4 after executing c—a’. After
increasing d—d +1, EMS executes the same operations to d
and D as in case (1).

a<—ce—p<1;

be—d<2;

while(d < ~)
if(¢, =1t,)

(1) if(d* b+1<p) // lw'l< lwl

c—c+1;
d—d+1;

/] w'l= lwl
ce—ay
de—d+1
be—d;

3) else if(¢, > ¢,)

c—a;
d—d+1;
be—d;

pe—d—a;

4) else //t,<t,

a<—c<b;
b—b+1;
d<b;
p—1;

) else

return a;

(Fig. 2) Internal memory algorithm[4, 7]

Case (3) is similar to case (2).

In case (4), after executing a<—c—b', we need to make A
and ¢ have 4= C= K. If vi(¢)=u@) (e, if ¢= B), then
Ky has to be read from the disk and assigned to 4 and
C, A—C« Ky . Since A has been changed, we have to update
A= next (4). If vi(a) = bi(c) =0l (v') (e, if 4= Cc=B), then
Ky 18 already in the internal memory and it is sufficient
to do A< ¢ and to update 4= next(4). Otherwise (i.e., if
A= C= B), nothing is to be done.

EMS then increases » and assigns it to d, b<b'+1 and d<b.
At this point, EMS has 4 = ¢= B. We check if » and v belong
to different blocks by comparing bi(v’)and bl (b). If they are
different, then D—4"; otherwise D—A4.

It will shown that EMS performs at most 4N/L disk inputs
by an amortized analysis [1]. Initially it is assumed that EMS
assigns N/L tokens to each of four blocks 4°,¢ B and D.
An internal memory block has to pay one token to the disk
whenever it inputs a new block from the disk. In EMS, for
each assignment <, a comment line states which block pays
for it. In case (2) and (3), B gives vi(d')—bl(b') tokens to ¢
and in case (4), 4" gives b(v')—bl(a’) tokens to D.

A" pays one token for reading x, at the start of EMS. In
case (4) A’advances from Ky, tO Ky, SKipping
bl(b')—bl(a’) blocks. See Figure 4. This number of toke ns
are delivered to D. Since a never decreases during the
execution of EMS, 4 "never moves backwards, i.e., never goes
from &, to k; for i>j. So, the total number of tokens given
to D by 47 is

S) —bi(a) < N/L—1

case(4)

Hence, 4 *spends at most N/L tokens.
Since b never decreases, B also never moves backwards.

AE-O A MEAE AllStes 22X Q/F HZel d1EE 241

In case (2) and (3) B advances from &y, to &), skipping
bi(d')—bl(v') blocks, as shown in Figure 5. Note that after b,
it has to be B= p. This number of tokens are given to C.
So, the total number of tokens given to ¢ is bounded by

(vi(d')—0l(d')) < N/JL—1
case @), (3)

Hence, B spends at most N/L - 1 tokens.

A gets a new block both at the start of the algorithm and
every occurrence of in case (4). Whenever 4 gets a new block,
4 “has to change its block by reading next(4) from the disk.
C pays one token for each of these inputs into 4°. That is,
the initial reading of 4 <k, and every reading of A< next
(4) in case (4) are paid for by ¢. Note that it holds that 4 = ¢

a<«—c<p<1; be—d<2;
A—C—D<K; [/ 4 *pays
A= K, //Cpays
while(d < N)
a'<—a; b'<b; ¢'—c; d'<d;
if(t, =t,)
1 if(d—b+1<p)
ce—c +1;
if(bi(c") = bl(c))
if(bl(a') =bl(c") C—AT
else C< next(C); // C pays
d—d +1
if(bl(d") = bl(d))
if(bl(a') = bl(d)) DA
else D& next(D);, // D pays
2) else // B gives bl(d')—bl(b’) tokens to C
ca';
C—A;
d<—d +1; bd;
if(bl(d") = bl(d))
if(bl(a") = bl(d') D<A
else D& next(D);, // D pays
3) else if(t, >t,) // B gives bl(d")—bl(b) tokens to C
ce—a;
C—A;
d<d +1; be—d; p<—d— a;
if(bi(d’) = bl(d))
if(bl(a)=0l(d')) D AT
else D& next(D);, // D pays
(4) else // A" gives bl(b')—bl(a’) tokens to D
a<—c<b;
if(bl (") = bl(b'))
A C=Kyyy A"« next(A); // C pays two tokens
else if(bl(c") = bl(a’))
A—C; A"= next(A); // C pays
beb' +1; d<—b; p<1;
it (0) = ol(b)) D— A"
else D« A;
return a;

(Fig. 3) EMS: External memory algorithm

| 4 [a¥] [¢ [B] [D]
4.C
[B [47] [b]
a,C
B,D|A* D
“ b)~ blla) >
blld)—bl(b")

(Fig. 4) Case(4): The first half of case(4) changes from the
top to the middle; the second half changes from the middle to
the bottom (either D=AorD=A").

242 ZEMeIE=2X A M15-AT M4=(2008.8)

(A1 [e]l [7] (7]
bllc’)—blla’) blld') —bilb")
—r —r

(Fig. 5) Case (2),(3): C«=A changes from the top to the
middle; b<—d changes from the middle to the bottom.

at the times of these readings. If 4= ¢, then next(¢) = 4",
In this case, ¢« next(¢) will be replaced by ¢ 4*(EMS
exactly does this way in case (1). This will save one token
for ¢. This token saved by ¢ is used to pay in advance for
getting a new block to 4"

¢ also pays one token for ¢<=K,,, in case (4). This happens
when bi(c) =bl(b'), i.e, when C= B. Assignment C<Ky)
advances ¢ at least one block from the current position. This
“free” advancement of ¢ is used for the payment.

Now we need to show that ¢ has a sufficient number of
tokens for paying for the readings into 4° as well as the
readings into ¢. ¢ has N/L tokens at the start. ¢ receives
bi(d') = bl(b') tokens from B in case (2) and (3). By doing c=4
in case (2) and (3), ¢ moves backwards from &, to &),
retreating bi(c’) —bi(a’) blocks. To get back to the original
block &), ¢ has to input bi(¢')—bi(a’) blocks in the worst
case. See Figure 5. One of these disk inputs can be saved
due to 4. So, ¢ needs b(¢')—bl(a’)—1 more tokens. Since
d—d=d-b, we have either bi(¢)—bl(a’) =0bl(d)—bl(b),
() —bia) =bi(d)—ol)+1, or bl(c')—bl(a’)=bl(d)—bl(b')—1. In
any case, bi(¢)—bl(a’)—1<bl(d)—bl(b'). So, C receives from
B a sufficient number of tokens.

In case (4), p moves backwards from &, either to
A=K, retreating bl(d')—bl(b') blocks, or to A = K44,
retreating bi(d’)—bi(v’) —1 blocks. Returning to the original
position &, from A requires at most »i(d’) —bi(s') block
inputs from the disk. One of these block inputs can be saved
due to 4", So, returning to the original position ., from
A"requires at most vi(d’) — bl (6') — 1 block inputs from the disk.
See Figure 4. In either case, » needs at most bi(d')—bi(b')—1
extra tokens. A'gives ul(v')—bi(a’) tokens to D. Since
V—a >c—d=d-V, it is easy to see that wl(v')—bi(a’) =
bi(d)—bl(b')—1. So, D 1s given by 4" a number of tokens that
is enough to go back to the original position.

[Theorem 1] Given a string of length N, on the one—disk
external memory model with block size L, the maximum suffix
o the string can be found using at most 4 [N/L1 disk I/Os.

4. Conclusions

An external memory algorithm for computing the maximum
suffix of a string has been presented. The algorithm uses four
blocks in the internal memory and performs at most 4(N/L)
disk I/Os. One of the future works is to decrease the number

of disk I/Os while still using four blocks.

References

[1] TH. Cormen, CE. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms, Second Ed., MIT Press and
McGraw-Hill, 2001.

[2] M. Crochemore, String matching and periods, Bulletin of the
EATCS, Vol.39, pp.149-153, 1989.

[3] M. Crochemore, String matching on ordered alphabets, Theor.
Comput. Sci., Vol.92, No.1, pp.33-47, 1992.

[4] M. Crochemore and D. Perrin, Two-way string matching, J.
ACM, Vol.38, No.3, pp.651-675, 1991.

[5] J.P. Duval, Factoring words over an ordered alphabet, J.
Algorithms, Vol.4, No.1, pp.363-381, 1983.

[6] DE. Knuth, JH. Morris, and V.R. Pratt, Fast pattern
matchings in strings, SIAM J. Comp., Vol.6, No.2, pp.323-350,
1977.

[7] K. Roh, M. Crochemore, C.S. Tliopoulos, and K. Park, External
Memory Algorithms for String Problems, Proceedings of the
17th Australasian Workshop on Combinatorial Algorithms,
Central Australia, July 2006.

[8] Y. Shiloach, Fast canonization of circular strings, J.
Algorithms, Vol.2, pp.107-121, 1981.

[9] J.S. Vitter, External memory algorithm and data structures:
dealing with massive data, ACM Computing Surveys, Vol.33,
No.2, pp.209-271, 2001.

PAN |
e-mail : skkim@cau.ac.kr
1981 A&t AlLHE Al st (EHAH
\ 1983 gk #}ely)ed AAbetah(EEtAAL
:f*h 19901 8¥ University of Washington
E ¥

A2keh (g shutA))
1991 39 ~1996d 29 AAuetw Az}
EAY 2us
19963 3€~d A St AFHT I} e
AA o ¢ A8 e, AEARSH dT e 2 ARRE §
2 4
e-mail : sckim@alg.cse.cau.ac.kr
2004 Sgoistn 755 H e gkt
2007 SYoista 75 skt
2007d 38~ A T4t 7
a4
FHAlEofF ¢ RFID ®eh S
B 5 &8 B ARRT 5
ER N
e-mail : mfg@alg.cse.cau.ac.kr
20039 Zetoistal A A (EEAL
20051 St 553 IHE A
2005 3€~d Al FSdgt HTE S8
kAL
Aok ¢ RFID H.¢}F Sensor network
BHeE 4588 B HHES T

o

