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요     약

외부 메모리 계산 모델에서 스트링의 최대서픽스를 찾는 문제를 고려한다. 외부메모리 모델에서는 디스크와 내부메모리 사이의 디스크 입출

력 횟수를 줄이는 알고리즘을 설계하는 것이 중요 사항이다. 길이가 N인 스트링은 N개의 서픽스를 가지는데, 이중에서 사전 순서에 따라 가장 

큰 것을 최대 서픽스라 부른다. 최대서픽스를 구하는 것은 여러 스트링 문제를 해결하는 데 중요한 역할을 한다. 

본 논문에서는 길이가 N인 스트링의 최대 서픽스를 구하는 외부메모리 알고리즘을 제시한다. 이 알고리즘은 네 개의 내부 메모리 블록을 

사용하고 최대 4(N/L)번의 디스크 입출력을 한다. 여기서 L은 블록의 크기이다.
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ABSTRACT

We study the problem of finding the maximum suffix of a string on the external memory model of computation with one disk. In this 

model, we are primarily interested in designing algorithms that reduce the number of I/Os between the disk and the internal memory. A 

string of length   has   suffixes and among these, the lexicographically largest one is called the maximum suffix of the string. Finding 

the maximum suffix of a string plays a crucial role in solving some string problems. 

In this paper, we present an external memory algorithm for computing the maximum suffix of a string of length  . The algorithm 

uses four blocks in the internal memory and performs at most 4  disk I/Os, where   is the size of a block.

Keyword : External Memory Algorithms, Maximum Suffix, Strings

1. Introduction1)

  Let ∑ be an alphabet. Let   and   be two strings over ∑. 

If s is lexicographically less than  , we denote this by   . 

Let    , where N is the length of  . For  ≤ ≤ ≤  , 

  is a substring of  . The substrings with    are called 

prefixes and those with    are called suffixes.   has N 

suffixes. Among these the lexicographically largest one is 

called the maximum suffix of  , denoted   .

 The maximum suffix of a string can be found in linear time 

[2, 3]. Finding the maximum suffix of a string is a key 

operation in solving the following four string problems: string 

matching, period finding, computing the minimum of a circular 
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string, and Lyndon decomposition [7]. The string matching 

is to find the occurrences of a pattern in a text, and the 

Knuth-Morris-Pratt algorithm [6] is one of the well-known 

algorithms for the problem. A string   is said to be the period 

of another string   if    ′ , where ′  is a prefix of   and 
  is as short as possible. In other words, repeating   copies 

of   and appending ′  after it results in t. The period of a 
string can be computed in linear time [2]. String   has   

circular shifts, namely    for  ≤ ≤  . The 

minimum of a circular string is the lexicographically smallest 

one among these circular shifts. Shiloach [8] gives a linear 

time algorithm for the problem. The Lyndon decomposition 

decomposes the string   into    , where the strings 

   are lexicographically non-increasing and each   

 ≤ ≤   is strictly less than any of its circular shifts except 

for   itself. The Lyndon decomposition of a string can be 

found by the algorithm due to Duval [5].

  Roh et al. [7] presents external memory algorithms for the 
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maximum suffix problem, and solves the four problems either 

directly employing the maximum suffix algorithms or 

indirectly using variations of the algorithms. More efficient 

external memory algorithms for the maximum suffix problem 

also will improve the external memory algorithms for the four 

problems. 

  Two external memory algorithms for computing the 

maximum suffix of a string are presented in [7]. One of them 

maintains four blocks in the internal memory and uses at most 

6  disk I/Os. The other uses six blocks and performs 4

  disk I/Os. Our algorithm will perform 4  disk I/Os 

with only four blocks in the internal memory.   is the block 

size. 

  In Section 2, we review the internal memory algorithms 

described in [4, 7]. Our external memory algorithm and its 

analysis will be given in Section 3. In Section 4, we give some 

concluding remarks.

2. Preliminaries

  Consider a prefix      of  , where  ≤   ≤    . 

Let     and let be the string such that    . Since 

  is a string, it can be represented as  ′ , where   is 
the period of  . Then   ′ . Let   and   be integers such 
that       , and   . Then    ,

    and ′  . Let   be another integer such 
that ′      . Figure 1 depicts a decomposition of   
and the relationship between the variables.

  For example, if ∑    and    , then    , 

      ,    , and ′   . And,   = 4,   = 8,   = 2, and 
  = 5.

  We now review the internal memory algorithm in [4] and 

[7], which has been adapted and modified for our purpose. 

Knowing    and the values of ′       and   for 
 , let us try to compute the maximum suffix of ′   . 
Since ′  is a prefix of  ′       . Compare   and 
. Based on the result of this comparison, there are four cases 

(1)-(4) to consider.

  (1)     : In this case we have ′    , and 
′←′. If ′  , nothing further is done. (2) If ′  , then 
another   has been found, and thus ←    and ′← .
  (3)   : We also have ′    . However, ′  is 
not a prefix of  , and thus   is no longer a period. The new 

period is , and ←  and ′← .
  (4)   : Since ′   , it will be the case that 
′     . So, ←  and we have to compute 
′   ′   .



  …  
    ′

(Fig. 1) Decomposition of  .

  Based on the case analysis, Figure 2 shows the internal 

memory algorithm IMMS( ), which returns   at its 

completion. Then,     .

3. External Memory Algorithm

  We assume that there is only one disk. Let L be the size 

of a block, meaning that a block of L characters long is read 

from the disk into the internal memory at once. Assume that 

≥  . Let     be the input string. For convenience, 

assume that N/L is an integer. Partition   into blocks 

 , where         

     . For  ≤ ≤   , denotes the index of the 

block which   belongs to, i.e.,         ≤ ≤  . 

  Two external memory algorithms for computing the 

maximum suffix of a string are presented in [7]. One of them 

maintains four blocks in the internal memory,  , and  , 

which have the blocks accessed by a, c, b, and d, respectively. 

This algorithm uses at most 6(N/L) disk I/Os. The other uses 

six blocks,  , , , and  , and performs 4(N/L) disk 

I/Os.    and    have the block next to A and B, respectively.

  Our external memory algorithm, called EMS, is shown in 

(Figure 3). EMS exactly follows the internal memory 

algorithm in (Figure 2). EMS maintains four blocks in the 

internal memory,    and  . The blocks   and   

always have the blocks that are accessed by the indices a, 

c and d, respectively. In other words,          and 

  . 
  has the block next to A, i.e.,     if   

≤    and  󰍋, otherwise. Another block   appears in 
comments. The block  is imaginary in the sense that it never 

resides in the internal memory and thus never appears in 

executable statements, but it assumed to always   . It 

is used only for the purpose of analysis of complexity. In EMS, 

←  denotes assignments between internal memory locations, 

and ⇐  (denotes assignments from the disk into a block in 

the internal memory. For a block   in the internal memory, 

next( ) denotes the block next to  ,  i.e., if     then next

( )   for  ≤ ≤    and next( ) = undefined for 

   .

  Initially, EMS assigns ←←⇐  and 
⇐.

  In case (1), after executing ←′   EMS checks if  , which 
will be accessed at the next iteration of the while loop, is still 

in the internal memory. If   ′  ,  nothing needs to be 
done because the block   already has  , Otherwise,   needs 

to be updated so that the new block   contains  . If 

′   ′   (i.e., if   ), then   is in  , and so ← . 
If ′ ≠ ′  , EMS reads the next block of   from the disk, 
 ⇐ next(). After executing ←′  , EMS does similar 
operations to   and   as it does to   and   above, to make 

sure that   is in   at the next iteration.

  In case (2), EMS assigns ←  after executing ←′ . After 
increasing ←′  , EMS executes the same operations to   
and   as in case (1). 
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    ←←←

    ←←

    while ≤  

       if  

(1)         if      ′ 
                ← 

← 

(2)         else    ′ 
                ←

← 
←

(3)         else if  

                ←
← 
←
← 

(4)         else     
                ←←

← 
←
←

    return 

(Fig. 2) Internal memory algorithm[4, 7]

  Case (3) is similar to case (2).

  In case (4), after executing ←←′ , we need to make   
and   have     ′ . If ′ ≠ ′   (i.e., if ≠), then 
′   has to be read from the disk and assigned to   and 
 , ← ⇐′ . Since   has been changed, we have to update 
   next ( ). If ′ ≠ ′   ′   (i.e., if ≠  ), then 
′   is already in the internal memory and it is sufficient 
to do ←  and to update    next( ). Otherwise (i.e., if 

    ), nothing is to be done.

  EMS then increases   and assigns it to  , ← ′   and ←. 
At this point, EMS has      . We check if   and ′  belong 
to different blocks by comparing ′ and    . If they are 
different, then ← ; otherwise ← .

  It will shown that EMS performs at most 4N/L disk inputs 

by an amortized analysis [1]. Initially it is assumed that EMS 

assigns N/L tokens to each of four blocks      and  . 

An internal memory block has to pay one token to the disk 

whenever it inputs a new block from the disk. In EMS, for 

each assignment ⇐ , a comment line states which block pays 

for it. In case (2) and (3),   gives ′   ′   tokens to   
and in case (4),    gives ′   ′   tokens to  .
     pays one token for reading   at the start of EMS. In 

case (4)  advances from ′  to ′ , skipping 
′   ′   blocks. See Figure 4. This number of toke‑ ns 

are delivered to  . Since a never decreases during the 

execution of EMS,  never moves backwards, i.e., never goes 

from   to   for    . So, the total number of tokens given 

to   by    is




′   ′  ≤  

Hence,  spends at most N/L tokens.

  Since   never decreases,   also never moves backwards. 

In case (2) and (3)   advances from ′   to ′ , skipping 
′   ′   blocks, as shown in Figure 5. Note that after ←  , 
it has to be    . This number of tokens are given to  . 

So, the total number of tokens given to   is bounded by




′   ′  ≤  

Hence, B spends at most N/L - 1 tokens.

    gets a new block both at the start of the algorithm and 

every occurrence of in case (4). Whenever   gets a new block, 

 has to change its block by reading next( ) from the disk. 

C pays one token for each of these inputs into  . That is, 

the initial reading of  ⇐   and every reading of 
⇐  next 

( ) in case (4) are paid for by  . Note that it holds that     

   ←←← ←←

←←⇐  

 ⇐  
   while ≤  
        ′← ′← ′← ′←
        if  

(1)          if    
                 ←′ 
                 if′ ≠ 
                     if′   ′   ← 
                     else  ⇐  next();  // C pays
                 ← ′ 
                 if′ ≠ 
                     if′ ≠ ′   ← 
                     else  ⇐  next( );  // D pays
(2)          else  // B gives ′   ′   tokens to C
                 ←′

←
←′  ←

                 if′ ≠ 
                     if′ ≠ ′   ← 
                     else  ⇐  next( );  // D pays
(3)     else if    // B gives ′     tokens to C
            ←′

←
←′  ← ← 

            if′ ≠ 
                 if′   ′   ← 
                 else  ⇐  next( );  // D pays
(4)     else  //    gives ′   ′   tokens to D
            ←←′
            if′ ≠ ′ 
                ←⇐′   ⇐  next( ); // C pays two tokens
            else if′ ≠ ′ 
                 ←  ⇐  next( ); // C pays
            ←′  ← ←
            if′ ≠   ← 
            else ←
      return 

(Fig. 3) EMS: External memory algorithm

(Fig. 4) Case(4): The first half of case(4) changes from the 

top to the middle; the second half changes from the middle to 

the bottom (either   ).
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(Fig. 5) Case (2),(3): ⇐ changes from the top to the 

middle; ← changes from the middle to the bottom.

at the times of these readings. If    , then next()   . 

In this case,  ⇐  next() will be replaced by  ← (EMS 

exactly does this way in case (1). This will save one token 

for  . This token saved by   is used to pay in advance for 

getting a new block to  .

    also pays one token for  ⇐′   in case (4). This happens 
when ′ ≠ ′  , i.e., when ≠ . Assignment  ⇐′   
advances   at least one block from the current position. This 

“free” advancement of   is used for the payment.

  Now we need to show that   has a sufficient number of 

tokens for paying for the readings into    as well as the 

readings into  .   has N/L tokens at the start.   receives 

′ ≠ ′   tokens from   in case (2) and (3). By doing ⇐  
in case (2) and (3),   moves backwards from ′   to ′ , 
retreating ′   ′   blocks. To get back to the original 
block ′ ,   has to input ′   ′   blocks in the worst 
case. See Figure 5. One of these disk inputs can be saved 

due to  . So,   needs ′   ′     more tokens. Since 
′ ′  ′ ′ , we have either ′   ′    ′   ′  , 
′′  ′′, or ′   ′   ′   ′    . In 
any case, ′   ′    ≤ ′   ′  . So,   receives from 
  a sufficient number of tokens.

  In case (4),   moves backwards from ′   either to 
  ′   retreating ′    ′   blocks, or to   ′   
retreating ′   ′     blocks. Returning to the original 
position ′   from A requires at most ′   ′   block 
inputs from the disk. One of these block inputs can be saved 

due to  . So, returning to the original position ′   from 
 requires at most ′   ′     block inputs from the disk. 
See Figure 4. In either case,   needs at most ′   ′     
extra tokens.  gives ′   ′   tokens to  . Since 
′ ′  ′ ′  ′ ′ , it is easy to see that ′   ′  ≥
′   ′    . So,   is given by    a number of tokens that 
is enough to go back to the original position.

[Theorem 1] Given a string of length  , on the one-disk 

external memory model with block size  , the maximum suffix 

of the string can be found using at most 4⌈⌉  disk I/Os.

4. Conclusions

  An external memory algorithm for computing the maximum 

suffix of a string has been presented. The algorithm uses four 

blocks in the internal memory and performs at most 4(N/L) 

disk I/Os. One of the future works is to decrease the number 

of disk I/Os while still using four blocks.
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