DOI QR코드

DOI QR Code

항고혈압 치료제 로사탄에 의해 인산화 되는 단백질 발굴

Identification of Phosphoproteins Induced by AT1 Receptor Blocker Losartan

  • 발행 : 2008.07.30

초록

안지오텐신II 수용체(AT1 수용체)는 혈관수축과 체내 전해질이온 조절에 중요한 역할을 한다. AT1 수용체 길항제(ARB)는 고혈압 치료에 이용되며 최근에는 당뇨병을 포함한 대사질환에 효능이 있음이 알려져 있다. 이 연구에서는 ARB 처리 후 세포 내 인산화단백질에 인산화가 일어나는지를 antibody array를 이용하여 실험하였다. 아미노산세린 및 트레오닌에 인산화되는 단백질 6개, 티로신에 인산화되는 단백질 12개에 대한 항체를 선정하여 nitrocellulose membrane에 부착시켰다. AT1 수용체를 발현한 COS-1 세포에 로사틴(losartan)을 처리하였을 때 small GTPase인 RhoA의 세린 잔기에 인산화가 20% 증가함을 관찰하였다. RhoA는 세포골격의 재배열에 중요한 역할을 하며 세린 잔기에 인산화가 되면 활성이 억제된다. 본 연구결과로부터 ARB가 AT1 수용체에 의한 혈관수축을 억제할 뿐만 아니라 새로운 세포 신호룰 생성함을 알 수 있다.

The angiotensin II receptor ($AT_1R$) antagonists are effective in treating patients with hypertension and showed beneficial effects in diabetes and other metabolic diseases. The beneficial effects of $AT_1R$ antagonists are mainly considered to be from inhibition of Ang $II-AT_1R$ signaling pathway such as the activation of NADPH oxidase and the generation of reactive oxygen species. In this study, we examined whether antagonist of the $AT_1R$ could account for phosphorylation of proteins in cells using antibody array. We have selected 6 proteins with Ser/Thr-phosphorylation sites and 12 proteins with Tyr-phosphorylation sites based on literature search. Upon $AT_1R$ antagonist losartan treatment to serum-starved COS-1 cells, there was ${\sim}20%$ increase of Ser phosphorylation in small GTPase RhoA. RhoA is known to be responsible for cytoskeleton rearrangement and is down-regulated upon Ser phosphorylation in vivo. Our finding provides a new insight into the mechanism and signaling pathway of the $AT_1R$ antagonist in cells.

키워드

참고문헌

  1. Hunyady, L. and K. J. Catt. 2006. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 20, 953-970. https://doi.org/10.1210/me.2004-0536
  2. Lefkowitz, R. J. and S. K. Shenoy. 2005. Transduction of receptor signals by beta-arrestins. Science 308, 512-517. https://doi.org/10.1126/science.1109237
  3. Perez, D. M. and S. S. Karnik. 2005. Multiple signaling states of G-protein-coupled receptors. Pharmacol. Rev. 57, 147-161. https://doi.org/10.1124/pr.57.2.2
  4. Azzi, M., P. G. Charest, S. Angers, G. Rousseau, T. Kohout, M. Bouvier and G. Pineyro. 2003. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406-11411. https://doi.org/10.1073/pnas.1936664100
  5. Wisler, J. W., S. M. DeWire, E. J. Whalen, J. D. Violin, M. T. Drake, S. Ahn, S. K. Shenoy and R. J. Lefkowitz. 2007. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc. Natl. Acad. Sci. USA 104, 16657-16662. https://doi.org/10.1073/pnas.0707936104
  6. Ostergren, J. 2007. Renin-angiotensin-system blockade in the prevention of diabetes. Diabetes Res. Clin. Pract. 76 Suppl 1, S13-21. https://doi.org/10.1016/j.diabres.2007.01.018
  7. Leiter, L. A. and R. Z. Lewanczuk. 2005. Of the reninangiotensin system and reactive oxygen species Type 2 diabetes and angiotensin II inhibition. Am. J. Hypertens 18, 121-128. https://doi.org/10.1016/j.amjhyper.2004.07.001
  8. Lee, C., S. Bhatt, A. Shukla, R. W. Desnoyer, S. P. Yadav, M. Kim, S. H. Jang and S. S. Karnik. 2008. Site-specific cleavage of GPCR-engaged beta-arrestin: Influence of the AT1 receptor conformation on scissile site selection. J. Biol. Chem. 10, 1074/jbc.M803062200.
  9. Luttrell, L. M., F. L. Roudabush, E. W. Choy, W. E. Miller, M. E. Field, K. L. Pierce and R. J. Lefkowitz. 2001. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449-2454. https://doi.org/10.1073/pnas.041604898
  10. Somlyo, A. P. and A. V. Somlyo. 1994. Signal transduction and regulation in smooth muscle. Nature 372, 231-236. https://doi.org/10.1038/372231a0
  11. Ellerbroek, S. M., K. Wennerberg and K. Burridge. 2003. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 278, 19023-19031. https://doi.org/10.1074/jbc.M213066200
  12. Sah, V. P., T. M. Seasholtz, S. A. Sagi and J. H. Brown. 2000. The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40, 459-489. https://doi.org/10.1146/annurev.pharmtox.40.1.459
  13. Barnes, W. G., E. Reiter, J. D. Violin, X. R. Ren, G. Milligan and R. J. Lefkowitz. 2005. beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J. Biol. Chem. 280, 8041-8050. https://doi.org/10.1074/jbc.M412924200
  14. Lee, C., S. A. Hwang, S. H. Jang, H. S. Chung, M. B. Bhat and S. S. Karnik. 2007. Manifold active-state conformations in GPCRs: agonist-activated constitutively active mutant AT1 receptor preferentially couples to Gq compared to the wild-type AT1 receptor. FEBS Lett 581, 2517-2522. https://doi.org/10.1016/j.febslet.2007.04.069
  15. Cotecchia, S., S. Exum, M. G. Caron and R. J. Lefkowitz. 1990. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. Natl. Acad. Sci USA 87, 2896-2900. https://doi.org/10.1073/pnas.87.8.2896
  16. Smit, M. J., H. F. Vischer, R. A. Bakker, A. Jongejan, H. Timmerman, L. Pardo and R. Leurs. 2007. Pharmacogenomic and structural analysis of constitutive G protein-coupled receptor activity. Annu. Rev. Pharmacol. Toxico.l 47, 53-87. https://doi.org/10.1146/annurev.pharmtox.47.120505.105126
  17. Alessi, D. R., M. Andjelkovic, B. Caudwell, P. Cron, N. Morrice, P. Cohen and B. A. Hemmings. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J. 15, 6541-6551.
  18. Stokoe, D. et al. 1997. Dual role of phosphatidylinositol- 3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567-570. https://doi.org/10.1126/science.277.5325.567
  19. Lang, P., F. Gesbert, M. Delespine-Carmagnat, R. Stancou, M. Pouchelet and J. Bertoglio. 1996. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. Embo J. 15, 510-519.
  20. Darnell, J. E., Jr., I. M. Kerr and G. R. Stark. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421. https://doi.org/10.1126/science.8197455
  21. Hibi, M., A. Lin, T. Smeal, A. Minden and M. Karin. 1993. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148. https://doi.org/10.1101/gad.7.11.2135
  22. Ui, M., M. H. Sonobe, T. Ito, M. Murakami, S. Okazaki, M. Takada, T. Sato and H. Iba. 1998. Biochemical and functional analysis of highly phosphorylated forms of c-Junprotein. FEBS Lett 429, 289-294. https://doi.org/10.1016/S0014-5793(98)00618-8
  23. Keranen, L. M., E. M. Dutil and A. C. Newton. 1995. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr. Biol. 5, 1394-1403. https://doi.org/10.1016/S0960-9822(95)00277-6
  24. Moore, M. J., J. R. Kanter, K. C. Jones and S. S. Taylor. 2002. Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide- dependent kinase-1. J. Biol. Chem. 277, 47878- 47884. https://doi.org/10.1074/jbc.M204970200
  25. Zwick, E., P. O. Hackel, N. Prenzel and A. Ullrich. 1999. The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol. Sci. 20, 408-412. https://doi.org/10.1016/S0165-6147(99)01373-5
  26. Blenis, J. 1993. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA 90, 5889-5892. https://doi.org/10.1073/pnas.90.13.5889
  27. Raingeaud, J., S. Gupta, J. S. Rogers, M. Dickens, J. Han, R. J. Ulevitch and R. J. Davis. 1995. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426. https://doi.org/10.1074/jbc.270.13.7420
  28. Calalb, M. B., T. R. Polte and S. K. Hanks. 1995. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell Biol. 15, 954-963. https://doi.org/10.1128/MCB.15.2.954
  29. Liu, K. D., S. L. Gaffen, M. A. Goldsmith and W. C. Greene. 1997. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr. Biol. 7, 817-826. https://doi.org/10.1016/S0960-9822(06)00369-1
  30. Feng, J., B. A. Witthuhn, T. Matsuda, F. Kohlhuber, I. M. Kerr and J. N. Ihle. 1997. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell Biol. 17, 2497-2501. https://doi.org/10.1128/MCB.17.5.2497
  31. Johnston, J. A., et al. 1994. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151-153. https://doi.org/10.1038/370151a0
  32. Derijard, B., M. Hibi, I. H. Wu, T. Barrett, B. Su, T. Deng, M. Karin and R. J. Davis. 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-1037. https://doi.org/10.1016/0092-8674(94)90380-8
  33. Lawler, S., X. H. Feng, R. H. Chen, E. M. Maruoka, C. W. Turck, I. Griswold-Prenner and R. Derynck. 1997. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J. Biol. Chem. 272, 14850-14859. https://doi.org/10.1074/jbc.272.23.14850