Encapsulation of Avocado Oil Using Spray Drying

분무건조를 이용한 아보카도 오일의 캡슐화

  • Bae, Eun-Kyung (Plant Resources Research Institute, Duksung Women's University) ;
  • Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University)
  • 배은경 (덕성여자대학교 식물자원연구소) ;
  • 김건희 (덕성여자대학교 자연과학대학 식품영양학과)
  • Published : 2008.06.30

Abstract

This study was performed to verify the effects of encapsulation against oil oxidation. Thiobarbituric acid (TBA) values of samples were compared during storage at $60^{\circ}C$, indicating that the encapsulated avocado oil had lower TBA values than the free avocado oil. Microcapsules consisting of a whey protein isolate (WPI)-only wall system had slightly improved oxidative stability; however, spray-dried particles containing a high proportion of maltodextrin (MD) clearly offered better protection from oxidation than the other forms of encapsulation. The chlorophyll (Chl) content of the encapsulated avocado oil was higher than that of the free oil sample. When compared to the control, all wall systems protected the change of the chlorophyll content storage. No large differences were observed between the encapsulated powders according to the various wall materials. The color of the encapsulated oil changed from green to yellowish-green, indicating the formation of pheophytin from chlorophyll. The yellowish color of the oil correlated with a reduced total Chl content. In conclusion, encapsulation with spray drying for avocado oil could lead to improved stability during storage with respect to oxidation and the preservation of chlorophyll.

아보카도 오일의 산업적인 이용성을 증가시키고, 안정성을 향상시키기 위해 분무건조기술을 이용하여 아보카도 오일의 캡슐화 연구를 수행하였다. 캡슐화된 샘플내의 오일과 오일자체만을 4, 25, $60^{\circ}C$ 온도의 암조건에서 8주 동안 저장하여 TBA값을 측정한 결과, 캡슐 속의 오일이 대조군과 비교하였을 때 산화에 더 안정하였다. 대조군의 TBA 형성은 저장기간이 길어질수록 증가하고 5주째에 급격하게 증가하였다. 그러나 캡슐화된 샘플 내에서의 TBA 값은 대조군보다 낮은 값을 나타내었다. 캡슐화된 샘플의 TBA 값은 아보카도 오일내의 MDA형성을 저지시켜 산화작용을 효과적으로 억제하였다. 분무 건조된 분말의 가운데서는 단백질의 함량이 커질수록 그 안정성이 감소하는 경향을 나타내었다. 클로로필 안정성을 60oC의 저장조건에서 비교한 결과 캡슐화된 시료 내에서 안정성을 보여주었다. 저장된 샘플 내 오일의 색도를 측정한 결과, 통계적인 유의성을 관찰할 수는 없었으나, 전체적으로 L값은 감소하고 a값은 증가하며, b값은 감소하는 경향을 나타내었다. 결론적으로 TBA 값 및 클로로필 함량, 색도의 실험결과에 의하면 아보카도 오일의 캡슐화가 산화를 억제하고 관능적인 특성을 향상시키는데 효과적인 수단임을 나타낸다.아보카도 오일의 산업적인 이용성을 증가시키고, 안정성을 향상시키기 위해 분무건조기술을 이용하여 아보카도 오일의 캡슐화 연구를 수행하였다. 캡슐화된 샘플내의 오일과 오일자체만을 4, 25, 60oC 온도의 암조건에서 8주 동안 저장하여 TBA값을 측정한 결과, 캡슐 속의 오일이 대조군과 비교하였을 때 산화에 더 안정하였다. 대조군의 TBA 형성은 저장기간이 길어질수록 증가하고 5주째에 급격하게 증가하였다. 그러나 캡슐화된 샘플 내에서의 TBA 값은 대조군보다 낮은 값을 나타내었다. 캡슐화된 샘플의 TBA 값은 아보카도 오일내의 MDA형성을 저지시켜 산화작용을 효과적으로 억제하였다. 분무 건조된 분말의 가운데서는 단백질의 함량이 커질수록 그 안정성이 감소하는 경향을 나타내었다. 클로로필 안정성을 $60^{\circ}C$의 저장조건에서 비교한 결과 캡슐화된 시료 내에서 안정성을 보여주었다. 저장된 샘플 내 오일의 색도를 측정한 결과, 통계적인 유의성을 관찰할 수는 없었으나, 전체적으로 L값은 감소하고 a값은 증가하며, b값은 감소하는 경향을 나타내었다. 결론적으로 TBA 값 및 클로로필 함량, 색도의 실험결과에 의하면 아보카도 오일의 캡슐화가 산화를 억제하고 관능적인 특성을 향상시키는데 효과적인 수단임을 나타낸다.

Keywords

References

  1. lez-Martinez P, Soliva-Fortuny RC, Gorinstein S, Martin-Belloso O. Natural antioxidants preserve the lipid oxidative stability of minimally processed avocado puree. J. Food Sci. 70: 325-329 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb11475.x
  2. Ashton OB, Wong M, McGhie TK, Vather R, Wang Y, Cecilia Requejo-Jackman C, Ramankutty P, Woolf AB. Pigments in avocado tissue and oil. J. Agr. Food Chem. 54: 10151-10158 (2006) https://doi.org/10.1021/jf061809j
  3. Logaraj TV, Bhattacharya S, Udaya SK, Venkateswaran G, Rheological behaviour of emulsions of avocado and watermelon oils during storage. Food Chem. 106: 937-943 (2008) https://doi.org/10.1016/j.foodchem.2007.07.004
  4. Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. F. 5: 169-186 (2006) https://doi.org/10.1111/j.1541-4337.2006.00009.x
  5. Werman MJ, Neeman I. Oxidative stability of avocado oil. J. Am.Oil Chem.Soc. 63: 355-360 (1986) https://doi.org/10.1007/BF02546046
  6. Diosady L. Chlorophyll removal from edible oils, Int. J. Appl. Sci. Eng. 3: 81-88 (2005)
  7. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J. Food Eng. 75: 27-35 (2006) https://doi.org/10.1016/j.jfoodeng.2005.03.047
  8. Hardas N, Danviriyakul S, Foley JL, Nawar W, Chinachoti P. Accelerated stability studies of microencapsulated anhydrous milk fat. LWT-Food Sci. Technol. 33: 506-513 (2000) https://doi.org/10.1006/fstl.2000.0696
  9. Hogan SA, O' riordan ED, O' sullivan M. Microencapsulation and oxidative stability of spray-dried fish oil emulsions. J. Microencapsul. 20: 675-688 (2003) https://doi.org/10.1080/0265204031000151974
  10. Cho Y, Shin D, Park J. A study on wall materials for flavor encapsulation. Korean J. Food Sci. Technol. 32: 132-139 (2000)
  11. Tan LH, Chan LW, Heng PWS. Effect of oil loading on microspheres produced by spray drying. J. Microencapsul. 22: 253-259 (2005) https://doi.org/10.1080/02652040500100329
  12. Wu KG, Chai XH, Chen Y. Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose. Chinesse J. Chem. 23: 1569-1572 (2005) https://doi.org/10.1002/cjoc.200591569
  13. Beristain CI, Garcia HS, Vernon-Carter EJ. Spray-dried encapsulation of cardamom (Elettaria cardamomum) essential oil with mesquite (Prosopis juliflora) um. LWT-Food Sci. Technol. 34: 398-401 (2001) https://doi.org/10.1006/fstl.2001.0779
  14. Kim E, Chen X, Pearce D. Melting characteristics of fat present on the surface of industrial spray-dried dairy powder. Colloid Surface B. 42: 1-8 (2005) https://doi.org/10.1016/j.colsurfb.2005.01.004
  15. Hogan SA, McNamee BF, O' Riordan ED, O' Sullivan M. Emulsification and microencapsulation properties of sodium caseinate/ carbohydrate blends. Int. Dairy J. 11: 137-144 (2001) https://doi.org/10.1016/S0958-6946(01)00091-7
  16. Dzondo-Gadet A, Nzikou JM, Etoumongo A, Linder A, Desobry S, Encapsulation and storage of safou pulp oil in 6DE maltodextrins. Process Biochem. 40: 265-271 (2005) https://doi.org/10.1016/j.procbio.2004.01.013
  17. Bylaite E, Nylander T, Venskutonis R, Jonsson B. Emulsification of caraway essential oil in water by lecithin and beta-lactoglobulin: Emulsion stability and properties of the formed oil-aqueous interface. Colloid Surface B. 20: 327-340 (2001) https://doi.org/10.1016/S0927-7765(00)00212-5
  18. Rosenberg M, Sheu TY. Microencapsulation of volatiles by spraydrying in whey protein-based wall systems. Int. Dairy J. 6: 273-284 (1996) https://doi.org/10.1016/0958-6946(95)00020-8
  19. Pegg RB. Spectrophotometric measurement of secondary lipid oxidation products; Lipid oxidation/stability, pp. 551-553 In: Handbook of Food Analytical Chemistry. John Wiley & Sons, Inc., Hoboken, NJ, USA (2005)
  20. Madeira AC, Ferreira A, Varennes A, Vieira MI. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plan. 34: 2461-2470 (2003) https://doi.org/10.1081/CSS-120024779
  21. Perez-Magarino S, Gonzalez-Sanjose ML. Application of absorbance values used in wineries for estimating CIELAB parameters in red wines. Food Chem. 81: 301-306 (2003) https://doi.org/10.1016/S0308-8146(02)00509-5
  22. Bilancia MT, Caponio F, Sikorska E, Pasqualone A, Summo C. Correlation of triacylglycerol oligopolymers and oxidised triacylglycerols to quality parameters in extra virgin olive oil during storage. Food Res. Int. 40: 855-861 (2007) https://doi.org/10.1016/j.foodres.2007.02.001
  23. Moreau DL, Rosenberg M. Oxidative stability of anhydrous milk fat microencapsulated in whey proteins. J. Food Sci. 61: 39-43 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb14721.x
  24. Kagami Y, Fujishima N, Matsuda K, Kometani T, Matsumura Y. Oxidative stability, structure, and physical characteristics of microcapsules formed by spray drying of fish oil with protein and dextrin wall materials. J. Food Sci. 68: 2248-2255 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb05755.x
  25. Ayala F, Echavarri JF, Negueruela AI. A new simplified method for measuring the color of wines. III. All wines and brandies. Am. J. Enol. Viticul. 50: 359-363 (1999)