Isolation and Identification of Low Molecular Phenolic Antioxidants from Ethylacetate Layer of Korean Black Raspberry (Rubus coreanus Miquel) Wine

복분자(Rubus coreanus Miquel) 와인의 에틸아세테이트층으로부터 저분자 페놀성 항산화 화합물의 단리·동정

  • Kim, Seong-Ja (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Lee, Hyoung-Jae (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Park, Keun-Hyung (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Rhee, Chong-Ouk (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Lim, Ik-Jae (Yeonsudang Co., Ltd.) ;
  • Chung, Hee-Jong (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Moon, Jae-Hak (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University)
  • 김성자 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 이형재 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 박근형 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 이종욱 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 임익재 ((주)연수당) ;
  • 정희종 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 문제학 (전남대학교 식품공학과 및 기능성식품연구센터)
  • Published : 2008.04.30

Abstract

Five antioxidative active substances were isolated from the EtOAc layer (20 g/56.2 g) of Korean black raspberry (Rubus coreanus Miquel) wine (11 L, black raspberry 15.7 kg fresh wt. eq.) by various column chromatography and high performance liquid chromatography (HPLC). Proton nuclear magnetic resonance ($^1H$-NMR) spectroscopy and gas chromatography Electro Ionization-Mass Spectrometry (GC-EI-MS) identified these as 4-hydroxybenzoic acid (1, 0.1 mg), 3,4-dihydroxybenzoic acid (2, 0.3 mg), 4-(2-hydroxyethyl)-phenol (3, 0.6 mg; tyrosol), pyrocatechol (4, 0.3 mg), 3,4,5-trihydroxybenzoic acid ethyl ester (5, 0.6 mg; ethyl gallate). The presence of 1 and 2 in Korean black raspberry has previously been reported. However, the presence of 3-5 in Korean black raspberry, and the identification of 1-5 from the Korean black raspberry wine have never before been reported.

복분자 와인은 복분자 열매를 발효ㆍ숙성시켜 제조하기 때문에 그들 양자 간의 성분에는 차이가 있을 것으로 추측되었다. 그러나 복분자 와인의 음용률이 높음에도 불구하고 복분자 와인 중에 함유된 성분들에 관한 체계적인 연구는 거의 전무한 실정이다. 그래서 먼저 복분자 와인 중에 함유되어 있는 성분들의 chemical profile의 검토를 위해 항산화 활성에 초점을 맞추어 화합물의 단리ㆍ구조해석에 착수하였다. 복분자 와인 11 L(신선 복분자 열매 15.7 kg 상당량)의 농축액(928.3 g)을 용매분획한 후 얻어진 EtOAc층(20 g/56.2 g)을 대상으로 각종 column chromatography 및 HPLC를 행하여 5종의 항산화 활성 화합물을 단리하였다. 그들을 대상으로 $^1H$-NMR 분석 및 TMS 유도체화 후 GCMS 분석을 행한 결과, 4-hydroxybenzoic acid(1, 0.1 mg), 3,4-dihydroxybenzoic acid(2, 0.3 mg), 4-(2-hydroxyethyl)-phenol(3, 0.6 mg), pyrocatechol(4, 0.3 mg), 3,4,5-trihydroxybenzoic acid ethyl ester(5, 0.6 mg)로 동정하였다. 화합물 1과 2는 복분자 열매중에 존재함이 보고되어 있으나 화합물 3-5는 복분자 열매로부터 그 존재가 보고되어진 바 없으며, 이들 5종의 화합물 모두가 복분자 와인으로부터 동정되어진 것 또한 처음이다.

Keywords

References

  1. Park YS, Chang HG. Lactic acid fermentation and biological activities of Rubus coreanus. J. Korean Soc. Agr. Chem. Biotechnol. 46: 367-375 (2003)
  2. Oriental Medicine Dictionary Compilation Committee. The Oriental Medicine Dictionary. Joungdam Publishing Co., Seoul, Korea. p. 546 (2001)
  3. National Oriental Medicine College Herbology Professor's Co- Compilation Committee. The Herbology. Yeongrimsa, Seoul, Korea. pp. 630-631 (1991)
  4. Heo J. Dongyeubogam. Publications on oriental medicine written by J. Hoe in Chosun Dynasty (1613). Minjungseowon, Seoul, Korea. p. 1383 (1993)
  5. Mattila P, Hellstrom J, Torronen R. Phenolic acids in berries, fruits, and beverages. J. Agr. Food Chem. 54: 7193-7199 (2006) https://doi.org/10.1021/jf0615247
  6. Proteggente AR, Pannala AS, Paganga G, van Buren L, Wagner E, Wiseman S, van De Put F, Dacombe C, Rice-Evans CA. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Rad. Res. 36: 217-233 (2002) https://doi.org/10.1080/10715760290006484
  7. Lee YA, Lee MW. Tannins from Rubus coreanum. Korean J. Pharmacogn. 26: 27-30 (1995)
  8. Lee MW. Phenolic compounds from the leaves of Rubus coreanum. Yakhak Hoeji 39: 200-204 (1995)
  9. Kim MS, Pang GC, Lee MW. Flavonoids from the leaves of Rubus coreanum. Yakhak Hoeji 41: 1-6 (1997)
  10. Yoon I, Wee JH, Moon JH, Ahn TH, Park KH. Isolation and Identification of quercetin with antioxidative activity from the fruits of Rubus coreanum Miquel. Korean J. Food Sci. Technol. 35: 499-502 (2003)
  11. Yoon I, Cho JY, Kuk JH, Wee JH, Jang MY, Ahn TH, Park KH. Identification and activity of antioxidative compounds from Rubus coreanum fruit. Korean J. Food Sci. Technol. 34: 898-904 (2002)
  12. Pang GC, Kim MS, Lee MW. Hydrolyzable tannnins from the fruits of Rubus coreanum. Korean J. Pharmacogn. 27: 366-370 (1996)
  13. Yang SW, Ho JN, Lee YH, Shin DH, Hong BS, Cho HY. Isolation and characterization of Helicobacter pylori urease inhibitor from Rubus coreanum Miquel. J. Korean Soc. Food Sci. Nutr. 33: 769-777 (2004) https://doi.org/10.3746/jkfn.2004.33.5.769
  14. Kim JH, Lee SY. A comparitive study on effect of black raspberrys. Kor. J. Herb. 6: 3-12 (1991)
  15. Kim BS, Park YK, Kang BS. The effect of Rubi fructus on the ovulation and ovary in rats. Kor. J. Herb. 16: 139-152 (2001)
  16. Takao T, Kitatani F, Watanabe N, Yagi A, Sakata K. A simple screrning method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
  17. Cho JY, Moon JH, Seong KY, Park KH. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxybenzoic acid isolated and identified from rice hull. Biosci. Biotechnol. Biochem. 62: 2273-2276 (1998) https://doi.org/10.1271/bbb.62.2273
  18. Lu Y, Foo LY. Identification and quantification of major polyphenols in apple pomace. Food Chem. 59: 187-194 (1997) https://doi.org/10.1016/S0308-8146(96)00287-7
  19. Yim CK, Moon JH, Park KH. Isolation of 3,4-dihydroxybenzoic acid, which exhibits antimicrobial activity, from fruits of Gardenia jasminoides Ellis. Korean J. Food Sci. Technol. 31: 1386-1391 (1999)
  20. Park KH, Park JD, Hyun KH, Nakayama M, Yokota T. Brassinosteroids and monoglycerides with brassinosteroid-like activity in immature seeds of Oryza sativa and Perilla frutescena and in cultured cells of Nicotiana tabacum. Biosci. Biotechnol. Biochem. 58: 2241-2243 (1994) https://doi.org/10.1271/bbb.58.2241
  21. Ribereau-Gayon P. Phenolic compounds of grapes and wine. I. Phenolic acids. Ann. Physiol. Veg. 6: 119-139 (1964)
  22. Maeaettae-Riihinen KR, Kamal-Eldin A, Toerroenen, AR. Identification and Quantification of Phenolic Compounds in Berries of Fragaria and Rubus Species (Family Rosaceae). J. Agr. Food Chem. 52: 6178-6187 (2004) https://doi.org/10.1021/jf049450r
  23. Hernandez T, Estrella I, Perez-Gordo M, Alegria EG, Tenorio C, Ruiz-Larrrea F, Moreno-Arribas MV. Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agr. Food Chem. 55: 5260-5266 (2007) https://doi.org/10.1021/jf063638o